18.07.2019

Гипоксия патофизиология кратко. Гипоксия. патофизиология внешнего дыхания. Нервная и эндокринная системы


ТЕРМИНОЛОГИЯ

Гипоксия - типовой патологический процесс, развивающийся в результате недостаточности биологического окисления. Приводит к нарушению энергетического обеспечения функций и пластических процессов в организме.

Гипоксия нередко сочетается с гипоксемией.

В эксперименте создают условия аноксии для отдельных органов, тканей, клеток или субклеточных структур, а также аноксемии в пределах небольших участков кровеносного русла (например, изолированного органа).

♦ Аноксия - прекращение процессов биологического окисления, как правило, при отсутствии кислорода в тканях.

♦ Аноксемия - отсутствие кислорода в крови.

В целостном живом организме формирование этих состояний невозможно.

КЛАССИФИКАЦИЯ

Гипоксии классифицируют с учётом этиологии, выраженности расстройств, скорости развития и длительности.

По этиологии выделяют две группы гипоксических состояний:

♦ экзогенные гипоксии (нормо- и гипобарическая);

эндогенные гипоксии (тканевая, дыхательная, субстратная, сердечно-сосудистая, перегрузочная, кровяная).

По критерию выраженности расстройств жизнедеятельности различают лёгкую, среднюю (умеренную), тяжёлую и критическую (летальную) гипоксии.

По скорости возникновения и длительности выделяют несколько разновидностей гипоксии:

♦ Молниеносную (острейшую) гипоксию. Развивается в течение нескольких секунд (например, при разгерметизации летательных

аппаратов на высоте более 9 000 м или в результате быстрой массивной потери крови).

♦ Острую гипоксию. Развивается в течение первого часа после воздействия причины гипоксии (например, в результате острой кровопотери или острой дыхательной недостаточности).

♦ Подострую гипоксию. Формируется в течение одних суток (например, при попадании в организм нитратов, окислов азота, бензола).

♦ Хроническую гипоксию. Развивается и длится более чем несколько суток (недели, месяцы, годы), например, при хронической анемии, сердечной или дыхательной недостаточности.

ЭТИОЛОГИЯ И ПАТОГЕНЕЗ ГИПОКСИИ Экзогенный тип гипоксии

Этиология

Причина экзогенных гипоксий - недостаточное поступление кислорода с вдыхаемым воздухом.

Нормобарическая экзогенная гипоксия. Вызвана ограничением поступления в организм кислорода с воздухом в условиях нормального барометрического давления при:

♦ Нахождении людей в небольшом и недостаточно вентилируемом пространстве (например, в шахте, колодце, лифте).

♦ При нарушениях регенерации воздуха или подачи кислородной смеси для дыхания в летательных и глубинных аппаратах, автономных костюмах (космонавтов, лётчиков, водолазов, спасателей, пожарников).

♦ При несоблюдении методики ИВЛ.

Гипобарическая экзогенная гипоксия. Вызвана снижением барометрического давления при подъёме на высоту (более 3000-3500 м, где pO 2 воздуха ниже 100 мм рт.ст.) или в барокамере. В этих условиях возможно развитие либо горной, либо высотной, либо декомпрессионной болезни.

Горная болезнь возникает при подъёме в горы, где организм подвергается постепенному уменьшению барометрического давления и pO 2 во вдыхаемом воздухе, а также охлаждению и повышенной инсоляции.

Высотная болезнь развивается у людей, поднятых на большую высоту в открытых летательных аппаратах, а также при снижении давления в барокамере. В этих случаях на организм действует относительно быстрое снижение барометрического давления и pO 2 во вдыхаемом воздухе.

Декомпрессионная болезнь наблюдается при резком снижении барометрического давления (например, в результате разгерметизации летательных аппаратов на высоте более 9 000 м).

Патогенез экзогенных гипоксий

К основным звеньям патогенеза экзогенной гипоксии (независимо от её причины) относятся: артериальная гипоксемия, гипокапния, газовый алкалоз и артериальная гипотензия.

♦ Артериальная гипоксемия - инициальное и главное звено экзогенной гипоксии. Гипоксемия ведёт к уменьшению поступления кислорода к тканям, что снижает интенсивность биологического окисления.

♦ Снижение напряжения в крови углекислого газа (гипокапния) возникает в результате компенсаторной гипервентиляции лёгких (в связи с гипоксемией).

♦ Газовый алкалоз является результатом гипокапнии.

♦ Снижение системного АД (артериальная гипотензия), сочетающееся с гипоперфузией тканей в значительной мере являются следствием гипокапнии. Выраженное снижение р а С0 2 является сигналом к сужению просвета артериол мозга и сердца.

Эндогенные типы гипоксии

Эндогенные типы гипоксии являются результатом многих патологических процессов и болезней, а также могут развиться при значительном увеличении потребности организма в энергии.

Дыхательный тип гипоксии

Причина - дыхательная недостаточность (недостаточность газообмена в лёгких, подробно описана в главе 23) может быть обусловлена:

♦ альвеолярной гиповентиляцией;

♦ сниженной перфузией кровью лёгких;

♦ нарушением диффузии кислорода через аэрогематический барьер;

♦ диссоциацией вентиляционно-перфузионного соотношения.

Патогенез. Инициальным патогенетическим звеном является артериальная гипоксемия, обычно сочетающаяся с гиперкапнией и ацидозом.

Снижаются p a 0 2 , pH, S a 0 2 , p v 0 2 , S v 0 2 , повышается p a C0 2 .

Циркуляторный (гемодинамический) тип гипоксии

Причина - недостаточность кровоснабжения тканей и органов. Выделяют несколько факторов, приводящих к недостаточности кровоснабжения:

♦ Гиповолемия.

♦ Уменьшение МОК при сердечной недостаточности (см. главу 22), а также при снижении тонуса стенок сосудов (как артериальных, так и венозных).

♦ Расстройства микроциркуляции (см. главу 22).

♦ Нарушение диффузии кислорода через стенку сосудов (например, при воспалении сосудистой стенки - васкулите).

Патогенез. Инициальным патогенетическим звеном является нарушение транспорта насыщенной кислородом артериальной крови к тканям.

Виды циркуляторной гипоксии. Выделяют локальную и системную формы циркуляторной гипоксии.

♦ Локальная гипоксия обусловлена местными расстройствами кровообращения и диффузии кислорода из крови в ткани.

♦ Системная гипоксия развивается вследствие гиповолемии, сердечной недостаточности и снижении ОПСС.

Изменения газового состава и pH крови: снижаются pH, p v 0 2 , S v 0 2 , повышается показатель артерио-венозной разницы по кислороду.

Гемический (кровяной) тип гипоксии

Причина - снижение эффективной кислородной ёмкости крови и, следовательно, её транспортирующей кислород функции вследствие:

♦ Выраженной анемии, сопровождающейся снижением содержания Hb менее 60 г/л (см. главу 22).

♦ Нарушения транспортных свойств Hb (гемоглобинопатии). Оно обусловлено изменением его способности к оксигенации в капиллярах альвеол и дезоксигенации в капиллярах тканей. Эти изменения могут быть наследственными или приобретёнными.

❖ Наследственные гемоглобинопатии обусловлены мутациями генов, кодирующих аминокислотный состав глобинов.

❖ Приобретённые гемоглобинопатии чаще всего являются следствием воздействия на нормальный Hb окиси углерода, бензола или нитратов.

Патогенез. Инициальным патогенетическим звеном является неспособность Hb эритроцитов связывать кислород в капиллярах лёгких, транспортировать и отдавать оптимальное количество его в тканях.

Изменения газового состава и pH крови: снижаются V0 2 , pH, p v 0 2 , повышается показатель артерио-венозной разницы по кислороду и снижается V a 0 2 при норме p a 0 2 .

Тканевой тип гипоксии

Причины - факторы, снижающие эффективность утилизации кислорода клетками или сопряжения окисления и фосфорилирования:

♦ Ионы циана (CN), специфически ингибирующие ферменты, и ионы металлов (Ag 2 +, Hg 2 +, Cu 2 +), ведущие к ингибированию ферментов биологического окисления.

♦ Изменения физико-химических параметров в тканях (температуры, электролитного состава, pH, фазового состояния мембранных компонентов) в более или менее выраженной мере снижают эффективность биологического окисления.

♦ Голодание (особенно белковое), гипо- и дисвитаминозы, нарушения обмена некоторых минеральных веществ приводят к уменьшению синтеза ферментов биологического окисления.

♦ Разобщение процессов окисления и фосфорилирования, вызываемое многими эндогенными агентами (например, избытком Ca 2+ , H+, ВЖК, йодсодержащих гормонов щитовидной железы), а также экзогенными веществами (2,4-динитрофенолом, грамицидином и некоторыми другими).

Патогенез. Инициальным звеном патогенеза является неспособность систем биологического окисления утилизировать кислород с образованием макроэргических соединений.

Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются показатели SvO2, pvO2, V v O2.

Субстратный тип гипоксии

Причина - дефицит в клетках субстратов биологического окисления в условиях нормальной доставки кислорода к тканям. В клинической практике наиболее часто вызывается недостатком глюкозы в клетках при сахарном диабете.

Патогенез. Инициальным звеном патогенеза является торможение биологического окисления вследствие отсутствия необходимых субстратов.

Изменения газового состава и pH крови: снижаются показатели pH и артерио-венозной разницы по кислороду, повышаются S v O 2 , p v O 2 ,

Перегрузочный тип гипоксии

Причина - значительная гиперфункция тканей, органов или их систем. Наиболее часто наблюдается при интенсивном функционировании скелетных мышц и миокарда.

Патогенез. Чрезмерная нагрузка на мышцу (скелетную или сердца) обусловливает относительную (по сравнению с требуемым при данном уровне функции) недостаточность кровоснабжения мышцы и дефицит кислорода в миоцитах.

Изменения газового состава и pH крови: снижаются показатели pH, S v O 2 , p v O 2 , повышаются показатели артерио-венозной разницы по кислороду и p v CO 2 .

Смешанный тип гипоксии

Смешанный тип гипоксии - результат сочетания нескольких разновидностей гипоксии.

Причина - факторы, нарушающие два и более механизмов доставки и использования кислорода и субстратов метаболизма в процессе биологического окисления.

♦ Наркотические вещества в высоких дозах способны угнетать функцию сердца, нейронов дыхательного центра и активность ферментов тканевого дыхания. В результате развиваются гемодинамический, дыхательный и тканевой типы гипоксии.

♦ Острая массивная кровопотеря приводит как к снижению кислородной ёмкости крови (в связи с уменьшением содержания Hb), так и к расстройству кровообращения: развивается гемический и гемодинамический типы гипоксии.

♦ При тяжёлой гипоксии любого происхождения нарушаются механизмы транспорта кислорода и субстратов метаболизма, а также интенсивность процессов биологического окисления.

Патогенез гипоксии смешанного типа включает звенья механизмов развития разных типов гипоксии. Смешанная гипоксия часто характеризуется взаимопотенцированием отдельных её типов с развитием тяжёлых экстремальных и даже терминальных состояний.

Изменения газового состава и pH крови при смешанной гипоксии определяются доминирующими расстройствами механизмов транспорта и утилизации кислорода, субстратов обмена веществ, а также процессов биологического окисления в разных тканях. Характер изменений при этом может быть разным и весьма динамичным.

АДАПТАЦИЯ ОРГАНИЗМА К ГИПОКСИИ

В условиях гипоксии в организме формируется динамичная функциональная система по достижению и поддержанию оптимального уровня биологического окисления в клетках.

Выделяют экстренные и долговременные механизмы адаптации к гипоксии.

Экстренная адаптация

Причина активации механизмов срочной адаптации: недостаточное содержание АТФ в тканях.

Механизмы. Процесс экстренной адаптации организма к гипоксии обеспечивают активацию механизмов транспорта O 2 и субстратов обмена веществ к клеткам. Эти механизмы предсуществуют в каждом организме и активируются сразу при возникновении гипоксии.

Система внешнего дыхания

♦ Эффект: увеличение объёма альвеолярной вентиляции.

♦ Механизмы эффекта: увеличение частоты и глубины дыхания, числа функционирующих альвеол.

♦ Механизм эффекта: увеличение ударного объёма и частоты сокращений.

Сосудистая система

♦ Эффект: перераспределение кровотока - его централизация.

♦ Механизм эффекта: региональное изменение диаметра сосудов (увеличение в мозге и сердце).

Система крови

♦ Механизмы эффекта: выброс эритроцитов из депо, увеличение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

♦ Эффект: повышение эффективности биологического окисления.

♦ Механизмы эффекта: активация ферментов тканевого дыхания и гликолиза, повышение сопряжённости окисления и фосфорилирования.

Долговременная адаптация

Причина включения механизмов долговременной адаптации к гипоксии: повторная или продолжающаяся недостаточность биологического окисления.

Механизмы. Долговременная адаптация к гипоксии реализуется на всех уровнях жизнедеятельности: от организма в целом до клеточного метаболизма. Эти механизмы формируются постепенно, обеспечивая оптимальную жизнедеятельность в новых, часто экстремальных условиях существования.

Основным звеном долговременной адаптации к гипоксии является повышение эффективности процессов биологического окисления в клетках.

Система биологического окисления

♦ Эффект: активация биологического окисления, что имеет ведущее значение в долговременной адаптации к гипоксии.

♦ Механизмы: увеличение количества митохондрий, их крист и ферментов в них, повышение сопряжённости окисления и фосфорилирования.

Система внешнего дыхания

♦ Эффект: увеличение степени оксигенации крови в лёгких.

♦ Механизмы: гипертрофия лёгких с увеличением числа альвеол и капилляров в них.

♦ Эффект: повышение сердечного выброса.

♦ Механизмы: гипертрофия миокарда, увеличение в нём числа капилляров и митохондрий в кардиомиоцитах, возрастание скорости взаимодействия актина и миозина, повышение эффективности систем регуляции сердца.

Сосудистая система

♦ Эффект: возрастание уровня перфузии тканей кровью.

♦ Механизмы: увеличение количества функционирующих капилляров, развитие артериальной гиперемии в испытывающих гипоксию органах и тканях.

Система крови

♦ Эффект: увеличение кислородной ёмкости крови.

♦ Механизмы: активация эритропоэза, увеличение элиминации эритроцитов из костного мозга, повышение степени насыщения Hb кислородом в лёгких и диссоциации оксигемоглобина в тканях.

Органы и ткани

♦ Эффект: повышение экономичности функционирования.

♦ Механизмы: переход на оптимальный уровень функционирования, повышение эффективности метаболизма.

Системы регуляции

♦ Эффект: возрастание эффективности и надёжности механизмов регуляции.

♦ Механизмы: повышение резистентности нейронов к гипоксии, снижение степени активации симпатико-адреналовой и гипоталамо-гипофизарно-надпочечниковой систем.

ПРОЯВЛЕНИЯ ГИПОКСИИ

Изменения жизнедеятельности организма зависят от типа гипоксии, её степени, скорости развития, а также от состояния реактивности организма.

Острейшая (молниеносная) тяжёлая гипоксия приводит к быстрой потере сознания, подавлению функций организма и его гибели.

Хроническая (постоянная или прерывистая) гипоксия сопровождается, как правило, адаптацией организма к гипоксии.

РАССТРОЙСТВА ОБМЕНА ВЕЩЕСТВ

Расстройства обмена веществ являются одним из ранних проявлений гипоксии.

♦ Концентрация неорганического фосфата в тканях увеличивается в результате повышенного гидролиза АТФ, АДФ, АМФ и КФ, подавления реакций окислительного фосфорилирования.

♦ Гликолиз на начальном этапе гипоксии активируется, что сопровождается накоплением кислых метаболитов и развитием ацидоза.

♦ Синтетические процессы в клетках угнетаются вследствие дефицита энергии.

♦ Протеолиз нарастает вследствие активации, в условиях ацидоза, протеаз, а также - неферментного гидролиза белков. Азотистый баланс становится отрицательным.

♦ Липолиз активируется в результате повышения активности липаз и ацидоза, что сопровождается накоплением избытка КТ и ВЖК. Последние оказывают разобщающее влияние на процессы окисления и фосфорилирования, чем усугубляют гипоксию.

♦ Водно-электролитный баланс нарушен в связи с подавлением активности АТФаз, повреждением мембран и ионных каналов, а также изменением содержания в организме ряда гормонов (минералокортикоидов, кальцитонина и др.).

НАРУШЕНИЯ ФУНКЦИЙ ОРГАНОВ И ТКАНЕЙ

При гипоксии нарушения функций органов и тканей выражены в разной мере, что определяется различной их резистентностью к гипоксии. Наименьшей устойчивостью к гипоксии обладает ткань нервной системы, особенно нейроны коры больших полушарий. При прогрессировании гипоксии и её декомпенсации угнетается функционирование всех органов и их систем.

Нарушения ВНД в условиях гипоксии выявляются уже через несколько секунд. Это проявляется:

♦ снижением способности адекватно оценивать происходящие события и окружающую обстановку;

♦ ощущениями дискомфорта, тяжести в голове, головной боли;

♦ дискоординацией движений;

♦ замедлением логического мышления и принятия решений (в том числе простых);

♦ расстройством сознания и его потерей в тяжёлых случаях;

♦ нарушением бульбарных функций, что приводит к расстройствам функций сердца и дыхания и может послужить причиной летального исхода.

Сердечно-сосудистая система

♦ Снижение сократительной функции миокарда и уменьшение, в связи с этим, ударного и сердечного выбросов.

♦ Расстройство кровотока в сосудах сердца с развитием коронарной недостаточности.

♦ Нарушения ритма сердца, включая мерцание и фибрилляцию предсердий и желудочков.

♦ Развитие гипертензивных реакций (за исключением отдельных разновидностей гипоксии циркуляторного типа), сменяющиеся артериальной гипотензией, в том числе - острой (коллапсом).

♦ Расстройства микроциркуляции, проявляющиеся чрезмерным замедлением тока крови в капиллярах, турбулентным его характером и артериолярно-венулярным шунтированием.

Система внешнего дыхания

♦ Увеличение объёма альвеолярной вентиляции на начальном этапе гипоксии с последующим (при нарастании степени гипоксии и повреждении бульбарных центров) прогрессирующим снижением по мере развития дыхательной недостаточности.

♦ Уменьшение общей и регионарной перфузии ткани лёгких вследствие нарушений кровообращения.

♦ Снижение диффузии газов через аэрогематический барьер (в связи с развитием отёка и набуханием клеток межальвеолярной перегородки).

Система пищеварения

♦ Расстройства аппетита (как правило, его снижение).

♦ Нарушение моторики желудка и кишечника (обычно - снижение перистальтики, тонуса и замедление эвакуации содержимого).

♦ Развитие эрозий и язв (особенно при длительной тяжёлой гипоксии).

ПРИНЦИПЫ УСТРАНЕНИЯ ГИПОКСИИ

Коррекция гипоксических состояний базируется на этиотропном, патогенетическом и симптоматическом принципах. Этиотропное лечение направлено на устранение причины гипоксии. При гипоксии экзогенного типа необходимо нормализовать содержание кислорода во вдыхаемом воздухе.

♦ Гипобарическую гипоксию устраняют путём восстановления нормального барометрического и, как следствие, парциального давления кислорода в воздухе.

♦ Нормобарическую гипоксию предотвращают посредством интенсивного проветривания помещения или подачи в него воздуха с нормальным содержанием кислорода.

Эндогенные типы гипоксии устраняют путём лечения заболевания

или патологического процесса, приведшего к гипоксии. Патогенетический принцип обеспечивает устранение ключевых звеньев и разрыв цепи патогенеза гипоксического состояния. Патогенетическое лечение включает следующие мероприятия:

♦ Ликвидацию или снижение степени ацидоза в организме.

♦ Уменьшение выраженности дисбаланса ионов в клетках, межклеточной жидкости, крови.

Министерство Здравоохранения Республики Беларусь

Белорусский государственный медицинский университет

КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

Е.В. Леонова, Ф.И. Висмонт

ГИПОКСИЯ

(патофизиологические аспекты)


УДК 612.273.2(075.8)

Рецензент: доктор мед. наук, профессор М.К. Недзведзь

Утверждено Научно-методическим советом университета

Леонова Е.В.

Гипоксия (патофизиологические аспекты): Метод. рекомендации

/Е.В. Леонова, Ф.И. Висмонт – Мн.: БГМУ, 2002. – 22 с.

Издание содержит краткое изложение патофизиологии гипоксических состояний. Дана общая характеристика гипоксии, как типового патологического процесса; обсуждаются вопросы этиологии и патогенеза различных видов гипоксий, компенсаторно-приспособительные реакции и нарушения функций, механизмы гипоксического некробиоза, адаптация к гипоксии и дизадаптация.

УДК 612.273.2(075.8)

ББК 28.707.3 &73

© Белорусский государственный

медицинский университет, 2002

1. Мотивационная характеристика темы

Общее время занятий: 2 академических часа для студентов стоматологического факультета, 3 – для студентов лечебно-профилактического, медико-профилактического и педиатрического факультетов.

Учебно-методическое пособие разработано с целью оптимизации учебного процесса и предлагается для подготовки студентов к практическому занятию по теме «Гипоксия». Данная тема рассматривается в разделе «Типовые патологические процессы». Приведенные сведения отражают связь со следующими темами предмета: «Патофизиология системы внешнего дыхания», «Патофизиология сердечно-сосудистой системы», «Патофизиология системы крови», «Патофизиология обмена веществ», «Нарушения кислотно-основного состояния».

Гипоксия является ключевым звеном патогенеза разнообразных заболеваний и патологических состояний. При любом патологическом процессе имеют место явления гипоксии, она играет важную роль в развитии повреждений при многих болезнях и сопровождает острую гибель организма независимо от причин ее вызывающих. Однако, в учебной литературе раздел «Гипоксия», по которому накоплен обширный материал, изложен очень широко, с излишними подробностями, что затрудняет его восприятие иностранными учащимися, которые в силу языкового барьера испытывают трудности при конспектировании лекций. Вышесказанное и явилось поводом для написания настоящего пособия. В пособии дается определение и общая характеристика гипоксии как типового патологического процесса, в краткой форме обсуждаются вопросы этиологии и патогенеза различных ее видов, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза; дается представление об адаптации к гипоксии и дизадаптации.

Цель занятия - изучить этиологию, патогенез различных видов гипоксии, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза, адаптации к гипоксии и дизадаптации.

Задачи занятия

Студент должен:

Определение понятия гипоксии, ее виды;

Патогенетическую характеристику различных видов гипоксии;

Компенсаторно-приспособительные реакции при гипоксии, их виды, механизмы;

Нарушения основных жизненных функций и обмена веществ при гипоксических состояниях;

Механизмы повреждения и гибели клеток при гипоксии (механизмы гипоксического некробиоза);

Основные проявления дизбаризма (декомпрессии);

Механизмы адаптации к гипоксии и дизадаптации.

Дать обоснованное заключение о наличии гипоксического состояния и характере гипоксии на основании анамнеза, клинической картины, газового состава крови и показателей кислотно-основного состояния.

3. Быть ознакомленным с клиническими проявлениями гипоксических состояний.

2. Контрольные вопросы по смежным дисциплинам

1. Кислородный гомеостаз, его сущность.

2. Система обеспечения организма кислородом, ее компоненты.

3. Структурно-функциональная характеристика дыхательного центра.

4. Кислородтранспортная система крови.

5. Газообмен в легких.

6. Кислотно-основное состояние организма, механизмы его регуляции.

3. Контрольные вопросы по теме занятия

1. Определение гипоксии как типового патологического процесса.

2. Классификация гипоксий по а) этиологии и патогенезу, б) распространенности процесса, в) скорости развития и длительности, г) степени тяжести.

3. Патогенетическая характеристика различных видов гипоксий.

4. Компенсаторно-приспособительные реакции при гипоксиях, их виды, механизмы возникновения.

5. Нарушения функций и обмена веществ при гипоксиях.

6. Механизмы гипоксического некробиоза.

7. Дизбаризм, его основные проявления.

8. Адаптация к гипоксии и дизадаптация, механизмы развития.

4. Гипоксия

4.1. Определение понятия. Виды гипоксий.

Гипоксия (кислородное голодание) – типовой патологический процесс, возникающий в результате недостаточности биологического окисления и обусловленной ею энергетической необеспеченности жизненных процессов. В зависимости от причин и механизма развития различают гипоксии:

· экзогенные , возникающие при воздействии на систему обеспечения кислородом изменениями его содержания во вдыхаемом воздухе и (или) изменениями общего барометрического давления – гипоксическую (гипо- и-нормобарическую), гипероксическую (гипер- и-нормобарическую);

· дыхательную (респираторную);

· циркуляторную (ишемическую и застойную);

· гемическую (анемическую и вследствие инактивации гемоглобина);

· тканевую (при нарушении способности тканей поглощать кислород или при разобщении процессов биологического окисления и фосфорилирования);

· субстратную (при дефиците субстратов);

· перегрузочную («гипоксия нагрузки»);

· смешанную .

Выделяют также гипоксии: а) по течению, молниеносную, длящуюся несколько десятков секунд; острую – десятки минут; подострую – часы, десятки часов, хроническую – недели, месяцы, годы; б) по распространенности – общую и регионарную; в) по степени тяжести – легкую, умеренную, тяжелую, критическую (смертельную) формы.

Проявления и исход гипоксий зависят от природы этиологического фактора, индивидуальной реактивности организма, степени тяжести, скорости развития, продолжительности процесса.

4.2. Этиология и патогенез гипоксий

4.2.1. Гипоксическая гипоксия

а) Гипобарическая. Возникает при понижении парциального давления кислорода во вдыхаемом воздухе, в условиях разреженной атмосферы. Имеет место при подъеме в горы (горная болезнь) или при полетах на летательных аппаратах (высотная болезнь, болезнь летчиков). Основными факторами, вызывающими патологические сдвиги являются: 1) понижение парциального давления кислорода во вдыхаемом воздухе (гипоксия); 2) понижение атмосферного давления (декомпрессия или дизбаризм).

б) Нормобарическая. Развивается в тех случаях, когда общее барометрическое давление нормально, но парциальное давление кислорода во вдыхаемом воздухе понижено. Встречается, главным образом, в производственных условиях (работа в шахтах, неполадки в системе кислородного обеспечения кабины летательного аппарата, в подводных лодках, а также имеет место при нахождении в помещениях малого объема при большой скученности людей.)

При гипоксической гипоксии снижается парциальное давление кислорода во вдыхаемом и альвеолярном воздухе; напряжение и содержание кислорода в артериальной крови; возникает гипокапния, сменяющаяся гиперкапнией.

4.2.2. Гипероксическая гипоксия

а) Гипербарическая. Возникает в условиях избытка кислорода («голод среди изобилия»). «Лишний» кислород не потребляется в энергетических и пластических целях; угнетает процессы биологического окисления; подавляет тканевое дыхание является источником свободных радикалов, стимулирующих перекисное окисление липидов, вызывает накопление токсических продуктов, а также вызывает повреждение легочного эпителия, спадение альвеол, снижение потребления кислорода, и в конечном счете нарушается обмен веществ, возникают судороги, коматозное состояние (осложнения при гипербарической оксигенации).

б) Нормобарическая. Развивается как осложнение при кислородной терапии, когда длительно используются высокие концентрации кислорода, особенно у пожилых людей, у которых с возрастом падает активность антиоксидантной системы.

При гипероксической гипоксии в результате увеличения парциального давления кислорода во вдыхаемом воздухе увеличивается его воздушно-венозный градиент, но снижается скорость транспорта кислорода артериальной кровью и скорость потребления кислорода тканями, накапливаются недоокисленные продукты, возникает ацидоз.

4.2.3. Дыхательная (респираторная) гипоксия

Развивается в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушением вентиляционно-перфузионных отношений, затруднением диффузии кислорода (болезни легких, трахеи, бронхов, нарушение функции дыхательного центра; пневмо-, гидро-, гемоторакс, воспаление, эмфизема, саркоидоз, асбестоз легких; механические препятствия для поступления воздуха; локальное запустевание сосудов легких, врожденные пороки сердца). При респираторной гипоксии в результате нарушения газообмена в легких снижается напряжение кислорода в артериальной крови, возникает артериальная гипоксемия, в большинстве случаев в связи с ухудшением альвеолярной вентиляции, сочетающаяся с гиперкапнией.

4.2.4. Циркуляторная (сердечно-сосудистая) гипоксия

Возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Важнейший показатель и патогенетическая основа ее развития – уменьшение минутного объема крови. Причины: расстройства сердечной деятельности (инфаркт, кардиосклероз, перегрузка сердца, нарушения электролитного баланса, нейрогуморальной регуляции функции сердца, тампонада сердца, облитерация полости перикарда); гиповолемия (массивная кровопотеря, уменьшение притока венозной крови к сердцу и др.). При циркуляторной гипоксии снижается скорость транспорта кислорода артериальной, капиллярной кровью при нормальном или сниженном содержании в артериальной крови кислорода, снижение этих показателей в венозной крови, высокая артериовенозная разница по кислороду.

4.2.5. Кровяная (гемическая) гипоксия

Развивается при уменьшении кислородной емкости крови. Причины: анемия, гидремия; нарушение способности гемоглобина связывать, транспортировать и отдавать тканям кислород при качественных изменениях гемоглобина (образование карбоксигемоглобина, метгемоглобинообразование, генетически обусловленные аномалии Нв). При гемической гипоксии снижается содержание кислорода в артериальной и венозной крови; уменьшается артерио-венозная разница по кислороду.

4.2.6. Тканевая гипоксия

Различают первичную и вторичную тканевую гипоксию. К первичной тканевой (целлюлярной) гипоксии относят состояния, при которых имеет место первичное поражение аппарата клеточного дыхания. Основные патогенетические факторы первично-тканевой гипоксии: а) снижение активности дыхательных ферментов (цитохромоксидазы при отравлении цианидами), дегидрогеназ (действие больших доз алкоголя, уретана, эфира), снижение синтеза дыхательных ферментов (недостаток рибофлавина, никотиновой кислоты), б) активация перекисного окисления липидов, ведущая к дестабилизации, декомпозиции мембран митохондрий и лизосом (ионизирующее излучение, дефицит естественных антиоксидантов – рутина, аскорбиновой кислоты, глютатиона, каталазы и др.), в) разобщение процессов биологического окисления и фосфорилирования, при котором потребление кислорода тканям может возрастать, но значительная часть энергии рассеивается в виде тепла и несмотря на высокую интенсивность функционирования дыхательной цепи, ресинтез макроэргических соединений не покрывает потребностей тканей, возникает относительная недостаточность биологического окисления. Ткани находятся в состоянии гипоксии. При тканевой гипоксии парциальное напряжение и содержание кислорода в артериальной крови могут до известного предела оставаться нормальными, а в венозной крови значительно повышаются; уменьшается артерио-венозная разница по кислороду. Вторичная тканевая гипоксия может развиться при всех других видах гипоксии.

4.2.7. Субстратная гипоксия

Развивается в тех случаях, когда при адекватной доставке кислорода к органам и тканям, нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению всех звеньев биологического окисления. В большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы, например, при расстройствах углеводного обмена (сахарный диабет и др.), а также при дефиците других субстратов (жирных кислот в миокарде), тяжелом голодании.

4.2.8. Перегрузочная гипоксия («гипоксия нагрузки»)

Возникает при напряженной деятельности органа или ткани, когда функциональные резервы систем транспорта и утилизации кислорода при отсутствии в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности в кислороде (чрезмерная мышечная работа, перегрузка сердца). Для перегрузочной гипоксии характерно образование «кислородного долга» при увеличении скорости доставки и потребления кислорода, а также скорости образования и выведения углекислоты, венозная гипоксемия, гиперкапния.

4.2.9. Смешанная гипоксия

Гипоксия любого типа, достигнув определенной степени, неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки кислорода и его утилизации. Сочетание различных типов гипоксии наблюдается, в частности, при шоке, отравлении боевыми отравляющими веществами, заболеваниях сердца, коматозных состояниях и др.

5. Компенсаторно-приспособительные реакции

Первые изменения в организме при гипоксии связаны с включением реакций, направленных на сохранение гомеостаза (фаза компенсации). Если приспособительные реакции оказываются недостаточными, в организме развиваются структурно-функциональные нарушения (фаза декомпенсации). Различают реакции, направленные на приспособление к кратковременной острой гипоксии (срочные) и реакции, обеспечивающие устойчивое приспособление к менее выраженной, но длительно существующей или многократно повторяющейся гипоксии (реакции долговременного приспособления). Срочные реакции возникают рефлекторно вследствие раздражения рецепторов сосудистой системы и ретикулярной формации ствола мозга изменившимся газовым составом крови. Происходит увеличение альвеолярной вентиляции, ее минутного объема, за счет углубления дыхания, учащения дыхательных экскурсий, мобилизации резервных альвеол (компенсаторная одышка); учащаются сердечные сокращения, увеличиваются масса циркулирующей крови (за счет выброса крови из кровяных депо), венозный приток, ударный и минутный объем сердца, скорость кровотока, кровоснабжение мозга, сердца и других жизненно важных органов и уменьшается кровоснабжение мышц, кожи и др. (централизация кровообращения); повышается кислородная емкость крови за счет усиленного вымывания эритроцитов из костного мозга, а затем и активация эритропоэза, повышаются кислородсвязывающие свойства гемоглобина. Оксигемоглобин приобретает способность отдавать тканям большее количество кислорода даже при умеренном снижении рО 2 в тканевой жидкости, чему способствует развивающийся в тканях ацидоз (при котором оксигемоглобин легче отдает кислород); ограничивается активность органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода; повышается сопряженность процессов биологического окисления и фосфорилирования, усиливается анаэробный синтез АТФ за счет активации гликолиза; в различных тканях увеличивается продукция оксида азота, что ведет к расширению прекапиллярных сосудов, снижению адгезии и агрегации тромбоцитов, активации синтеза стресс-белков, защищающих клетку от повреждения. Важной приспособительной реакцией при гипоксии является активация гипоталамо-гипофизарно-надпочечниковой системы (стресс – синдром), гормоны которой (глюкокортикоиды), стабилизируя мембраны лизосом, снижают тем самым повреждающее действие гипоксического фактора, и препятствуют развитию гипоксического некробиоза, повышая устойчивость тканей к недостатку кислорода.

Компенсаторные реакции при гипероксической гипоксии направлены на предупреждение возрастания напряжения кислорода в артериальной крови и в тканях ─ ослабление легочной вентиляции и центрального кровообращения, снижение минутного объема дыхания и кровообращения, частоты сердечных сокращений, ударного объема сердца, уменьшение объема циркулирующей крови, ее депонирование в паренхиматозных органах; понижение артериального давления; сужение мелких артерий и артериол мозга, сетчатки глаза и почек, наиболее чувствительных как к недостатку, так и к избытку кислорода. Эти реакции в целом обеспечивают соответствие потребности тканей в кислороде.

6. Нарушения основных физиологических функций и обмена веществ

Наиболее чувствительна к кислородному голоданию нервная ткань. При полном прекращении снабжения кислородом признаки нарушения в коре больших полушарий обнаруживаются уже через 2,5-3 мин. При острой гипоксии первые расстройства (особенно четко проявляющиеся при гипоксической ее форме) наблюдаются со стороны высшей нервной деятельности (эйфория, эмоциональные расстройства, изменения почерка и пропуски букв, притупление и потеря самокритики, которые затем сменяются депрессией, угрюмостью, сварливостью, драчливостью). С нарастанием острой гипоксии вслед за активацией дыхания возникают различные нарушения ритма, неравномерность амплитуды дыхательных движений, редкие, короткие дыхательные экскурсии постепенно ослабевающие до полного прекращения дыхания. Возникает тахикардия, усиливающаяся параллельно ослаблению деятельности сердца, затем – нитевидный пульс, фибрилляция предсердий и желудочков. Систолическое давление постепенно понижается. Нарушаются пищеварение и функция почек. Снижается температура тела.

Универсальный, хотя и неспецифический признак гипоксических состояний, гипоксического повреждения клеток и тканей – повышение пассивной проницаемости биологических мембран, их дезорганизация, что ведет к выходу ферментов в межтканевую жидкость и кровь, вызывая нарушения обмена веществ и вторичную гипоксическую альтерацию тканей.

Изменения в углеводном и энергетическом обмене приводят к дефициту макроэргов, уменьшению содержания АТФ в клетках, усилению гликолиза, снижению содержания гликогена в печени, угнетению процессов его ресинтеза; в результате в организме повышается содержание молочной и др. органических кислот. Развивается метаболический ацидоз. Недостаточность окислительных процессов приводит к нарушению обмена липидов и белков. Снижается концентрация в крови основных аминокислот, возрастает содержание в тканях аммиака, возникает отрицательный азотистый баланс, развивается гиперкетонемия, резко активируются процессы перекисного окисления липидов.

Нарушение обменных процессов приводит к структурно-функциональ-ным изменениям и повреждению клеток с последующим развитием гипоксического и совободно радикального некробиоза, гибели клеток, в первую очередь, нейронов.

6.1. Механизмы гипоксического некробиоза

Некробиоз – процесс отмирания клетки, глубокая, частично необратимая стадия повреждения клетки, непосредственно предшествующая ее смерти. По биохимическим критериям клетка считается погибшей с момента полного прекращения ею производства свободной энергии. Любое воздействие, вызывающее более или менее продолжительное кислородное голодание ведет к гипоксическому повреждению клетки. На начальном этапе этого процесса снижается скорость аэробного окисления и окислительного фосфорилирования в митохондриях. Это приводит к понижению количества АТФ, возрастанию содержания аденозиндифосфата (АДФ), и аденозинмонофосфата (АМФ). Уменьшается коэффициент АТФ/АДФ+АМФ, снижаются функциональные возможности клетки. При низком соотношении АТФ/АДФ+АМФ активируется фермент фосфорфруктокиназа (ФФК), что приводит к усилению реакции анаэробного гликолиза, клетка расходует гликоген, обеспечивая себя энергией за счет бескислородного распада глюкозы; Запасы гликогена в клетке истощаются. Активация анаэробного гликолиза ведет к снижению рН цитоплазмы. Прогрессирующий ацидоз вызывает денатурацию белков и помутнение цитоплазмы. Поскольку ФФК кислотоугнетаемый фермент, то в условиях гипоксии ослабляется гликолиз, формируется дефицит АТФ. При значительном дефиците АТФ процессы клеточного повреждения усугубляются. Наиболее энергоемкий фермент в клетке – калий-натриевая АТФ-аза. При дефиците энергии ограничиваются его возможности, в результате чего утрачивается нормальный калий-натриевый градиент; клетки теряют ионы калия, а вне клеток возникает его избыток – гиперкалиемия. Утрата калий-натриевого градиента означает для клетки уменьшение потенциала покоя, вследствие чего положительный поверхностный заряд, свойственный нормальным клеткам уменьшается, клетки становятся менее возбудимыми, нарушаются межклеточные взаимодействия, что и происходит при глубокой гипоксии. Последствие повреждения калий-натриевого насоса – проникновение избытка натрия в клетки, гипергидратация и набухание их, расширение цистерн эндоплазматического ретикулума. Гипергидратации способствует и накопление осмотически активных продуктов разрушения и усиленного катаболизма полимерных клеточных молекул. В механизме гипоксического некробиоза, особенно на глубоких стадиях, ключевую роль играет увеличение содержания ионизированного внутриклеточного кальция, избыток которого токсичен для клетки. Увеличение внутриклеточной концентрации кальция вначале обусловлено нехваткой энергии для работы кальций-магниевого насоса. При углублении гипоксии кальций попадает в клетку уже через входные кальциевые каналы наружной мембраны, а также массивным потоком из митохондрий, цистерн гладкого эндоплазматического ретикулума и через поврежденные клеточные мембраны. Это приводит к критическому нарастанию его концентрации. Длительный избыток кальция в цитоплазме ведет к активации Са ++ зависимых протеиназ, прогрессирующему цитоплазматическому протеолизу. При необратимом повреждении клетки в митохиндрии поступают значительные количества кальция, что приводит к инактивации их ферментов, денатурации белка, стойкой утрате способности к продукции АТФ даже при восстановлении притока кислорода или реперфузии. Таким образом, центральным звеном клеточной гибели является длительное повышение цитоплазматической концентрации ионизированного кальция. Гибели клеток способствуют и активные кислородсодержащие радикалы, образующиеся в большом количестве липоперекиси и гидроперекиси липидов мембран, а также гиперпродукция оксида азота, оказывающие на этом этапе повреждающее, цитотоксическое действие.

6.2. Дизбаризм

При очень быстром понижении барометрического давления (нарушение герметичности летательных аппаратов, быстрый подъем на высоту) развивается симптомокомплекс декомпрессионной болезни (дизбаризм), включающий следующие компоненты:

а) на высоте 3-4 тысячи метров – расширение газов и относительное увеличение их давления в замкнутых полостях тела – придаточных полостях носа, лобных пазухах, полости среднего уха, плевральной полости, желудочно-кишечном тракте («высотный метеоризм»), что ведет к раздражению рецепторов этих полостей, вызывая резкие боли («высотные боли»);

б) на высоте 9 тыс. м. – дессатурация (снижение растворимости газов), газовая эмболия, ишемия тканей; мышечно-суставные, загрудинные боли; нарушение зрения, кожный зуд, вегето-сосудистые и мозговые расстройства, поражение периферических нервов;

в) на высоте 19 тыс. м. (В=47 мм рт. ст., рО 2 – 10 мм рт. ст.) и более – процесс «кипения» в тканях и жидких средах при температуре тела, высотная тканевая и подкожная эмфизема (появление подкожных вздутий и боль).

7. Адаптация к гипоксии и дизадаптация

При многократно повторяющейся кратковременной или постепенно развивающейся и длительно существующей умеренной гипоксии развивается адаптация – процесс постепенного повышения устойчивости организма к гипоксии, в результате которого организм приобретает способность нормально осуществлять различные формы деятельности (вплоть до высших), в таких условиях недостатка кислорода, которые ранее этого «не позволяли».

При длительной адаптации к гипоксии формируются механизмы долговременного приспособления («системный структурный след»). К ним относятся: активация гипоталамо-гипофизарной системы и коры надпочечников, гипертрофия и гиперплазия нейронов дыхательного центра, гипертрофия и гиперфункция легких; гипертрофия и гиперфункция сердца, эритроцитоз, увеличение количества капилляров в мозге и сердце; повышение способности клеток к поглощению кислорода, связанное с увеличением числа митохондрий, их активной поверхности и химического средства к кислороду; активация антиоксидантной и детоксикационной систем. Эти механизмы позволяют адекватно обеспечивать потребность организма в кислороде, несмотря на его дефицит во внешней среде, трудности в доставке и снабжении тканей кислородом. В их основе лежит активация синтеза нуклеиновых кислот и белка. В случае длительно продолжающейся гипоксии, ее углублении происходит постепенное истощение адаптационных возможностей организма, может развиться их несостоятельность и наступить «срыв» реакции долговременной адаптации (дизадаптация) и даже декомпенсация, сопровождающаяся нарастанием деструктивных изменений в органах и тканях, рядом функциональных нарушений, проявляющаяся синдромом хронической горной болезни.

Литература

Основная:

1. Патологическая физиология. Под ред. А.Д. Адо и В.В. Новицкого, Изд-во Томского ун-та, Томск, 1994, с. 354-361.

2. Патологическая физиология. Под ред. Н.Н. Зайко и Ю.В. Быця. – Киев, «Логос», 1996, с. 343-344.

3. Патофизиология. Курс лекций. Под ред. П.Ф. Литвицкого. – М., Медицина, 1997, с. 197-213.

Дополнительная:

1. Зайчик А.Ш., Чурилов А.П. Основы общей патологии, часть 1, СПб, 1999. – Элби, с. 178-185.

2. Гипоксия. Адаптация, патогенез, клиника. Под общ. ред. Ю.Л.Шевченко. – СПб, ООО «Элби-СПБ», 2000, 384 с.

3. Руководство по общей патологии. Под ред. Н.К. Хитрова, Д.С. Саркисова, М.А. Пальцева. – М. Медицина, 1999. – С. 401-442.

4. Шанин В.Ю. Клиническая патофизиология. Учебник для медицинских вузов. – СПб: «Специальная литература», 1998, с. 29-38.

5. Шанин В.Ю. Типовые патологические процессы. – СПб: Специальная литература, 1996, - с. 10-23.


1. Мотивационная характеристика темы. Цель и задачи занятия.......... 3

2. Контрольные вопросы по смежным дисциплинам.............................. 5

3. Контрольные вопросы по теме занятия............................................... 5

4. Гипоксия

4.1. Определение понятия, виды гипоксий........................................ 6

4.2. Этиология и патогенез гипоксий................................................ 7

5. Компенсаторно-приспособительные реакции..................................... 12

6. Нарушения основных физиологических функций и обмена веществ. 14

6.1. Механизмы гипоксического некробиоза...................................... 16

6.2. Дизбаризм...................................................................................... 18

7. Адаптация к гипоксии и дизадаптация................................................ 19

8. Литература............................................................................................ 20

Гипоксический тип гипоксии (экзогенная гипоксия) развивается в результате снижения рО2 во вдыхаемом воздухе. Наиболее типичным ее проявлением являются горная и высотная болезни. Гипоксическая гипоксия может возникнуть во всех случаях, когда осуществляется дыхание газовыми смесями с недостаточным парциальным давлением кислорода. Необходимо помнить, что гипоксическая гипоксия может возникнуть при дыхании в замкнутом пространстве (отсеки подводной лодки, хранилища, бункера, ангары), а также при неисправности дыхательной аппаратуры.

При гипоксической гипоксии рО2 снижается как в альвеолярном воздухе, так и в артериальной крови, тканях. Уменьшается общий венозно-воздушный градиент.

Выделяют 4 степени тяжести гипоксии в зависимости от рО2 артериальной крови:
1 степень рО2 - 60-45 мм рт. ст. Появляются первые видимые признаки наруше-
ния функций сердечно-сосудистой и дыхательной систем в виде тахикардии, тахипноэ, нарушение координации движений, развитие мышечной слабости.

2 степень рО2 - 50-40 мм рт.
ст. Прекоматозное состояние, нарушение психики и
эмоциональной сферы в виде немотивированной эйфории (по причине гипоксии коры головного мозга), дальнейшее нарушение координации движений, потеря чувствительности, выраженные признаки сердечной и дыхательной недостаточности.

3 степень рО2 - 40-20 мм рт. ст. Характеризуется потерей сознания. У пострадав-
шего церебральная кома, ригидность мышц, может произойти остановка сердца.

4 степень рО2 - меньше 20 мм рт. ст. Характеризуется развитием терминального состояния со всеми признаками данного процесса и гибелью пострадавшего.
Из приведенных данных видно, что летальным считается рОг, соответствующее нескольким десяткам мм рт. ст., то есть когда содержание кислорода во вдыхаемом воздухе уменьшается на 60% и более.

Одной из распространенных форм гипоксической гипоксии является высотная болезнь - остро развивающееся состояние, в котором выделяют 2 формы:
♦ коллаптоидную (характеризуется прогрессирующим падением артериального давления);
♦ обморочную (сопровождается потерей сознания в течение 10-15 секунд).

Горная болезнь развивается при пребывании в условиях высокогорья или при длительном нахождении в барокамере в условиях гипобарии.
Помимо парциального давления кислорода в механизмах развития горной болезни существенное значение имеют влажность воздуха, инсоляция, сильные ветры, низкая минерализация питьевой воды.

Поэтому течение горной болезни отличается на одних и тех же высотах, но в разной местности.
Выделяют следующие формы горной болезни:
♦ высокогорный отек легких;
♦ высокогорный отек головного мозга;
геморрагический синдром;
♦ нарушение свертывающей системы крови с преимущественной гиперкоагуляцией.

По длительности течения выделяют:
♦ молниеносная (обморочная форма горной болезни) - развивается в течение нескольких секунд;
♦ острая (коллаптоидная форма горной болезни) - в течение нескольких минут;
♦ хроническая (при пребывании в условиях высокогорья в течение многих часов и суток).

Основной этиологический фактор горной болезни - это снижение парциального давления кислорода в альвеолярной газовой смеси, обусловленное низким парциальным давлением кислорода во вдыхаемой газовой смеси.
От горной болезни страдают 30% неадаптированных к высотной гипоксемии людей после быстрого подъема на высоту, большую, чем 3000 м над уровнем моря. У 75% непри-споболенных субъектов симптомы острой горной болезни выявляют после быстрого подъема на высоту, превышающую 4500 м над уровнем моря. Головная боль как первый признак начала развития горной болезни связана со спазмом сосудов головного мозга в ответ на падение напряжения углекислого газа в артериальной крови в результате компенсаторной гипервентиляции, обусловливающей гипокапнию, но не устраняющей артериальной гипоксемии. Когда напряжение кислорода в артериальной крови не больше, чем 60 мм рт. ст., то значительный гипоэргоз церебральных нейронов, несмотря противодействие системы ауторе-гуляции локальной скорости мозгового кровотока, обусловливает расширение артериол и раскрытие прекапилярных сфинктеров в системе микроциркуляции мозга. В результате увеличивается кровоснабжение головного мозга, что повышает внутричерепное давление и проявляет себя головной болью.

Компенсаторная гипервентиляция у страдающих горной болезнью на высотах в диапазоне 3000-4500 м над уровнем моря вызывает респираторный алкалоз и бикарбонатурию как компенсаторную реакцию на снижение содержания протонов и рост бикарбонатного аниона во внеклеточной жидкости и клетках.
Бикарбо-натурия усиливает натрийурез и, снижая содержание в организме натрия, уменьшает объем внеклеточной жидкости и даже обусловливает гиповолемию. При подъеме на высоты, на которых компенсаторные реакции в ответ на гипоксиче-скую гипоксию не в состоянии предотвратить связанного с ней гипоэргоза клеток, гипервентиляция через повышение потребления кислорода организмом обостряет системный гипоэргоз. Усиление системного гипорэргоза на уровне всего организма повышает интенсивность анаэробного гликолиза, что вызывает метаболический лактатный ацидоз типа А.

Патологически низкое парциальное давление кислорода во вдыхаемой газовой смеси служит стимулом для «альвеоло-капиллярного рефлекса» с еще не выявленным центральным звеном. В эфферентном звене, на уровне эффектора, рефлекс сужает легочные венулы и артериолы, что обусловливает легочную первичную как венозную, так и артериальную гипертензию. Легочная артериальная гипертензия может приводить к острой правожелудочковой недостаточности в результате патогенно высокой постнагрузки правого желудочка.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Гипоксия - нарушение окислительных процессов в тканях, возникающее при недостаточном поступлении кислорода или нарушении его утилизации в процессе биологического окисления (кислородная недостаточность, кислородное голодание).

В зависимости от этиологического фактора, темпа нарастания и продолжительности гипоксического состояния, степени гипоксии, реактивности организма и т.д. проявление гипоксии может значительно варьировать. Возникающие в организме изменения представляют собой совокупность:

1) непосредственных последствий воздействия гипоксического фактора;

2) вторично возникающих нарушений ;

3) развивающихся компенсаторных и приспособительных реакций. Эти явления находятся в тесной связи и не всегда подаются четкому разграничению.

Классификация основных типов гипоксий:

1) гипоксическая;

2) дыхательная;

3) кровяная;

4) циркуляторная;

5) тканевая;

6) гипербарическая;

7) гипероксическая;

8) гипоксия нагрузки;

9) смешанная - сочетание различных видов гипоксий.

Классификация гипоксий по тяжести :

1) скрытая (выявляется только при нагрузке);

2) компенсированная (тканевой гипоксии в состоянии покоя нет за счет напряжения систем доставки кислорода);

3) выраженная - с явлениями декомпенсации (в покое недостаточность кислорода в тканях);

4) некомпенсированная - выраженные нарушения обменных процессов с явлениями отравления;

5) терминальная - необратимая.

По темпу развития и продолжительности течения различают:

а) молниеносную форму - в течение нескольких десятков секунд;

б) острую - несколько минут или десятков минут (острая сердечная недостаточность);

в) подострую - несколько часов;

г) хроническую - недели, месяцы, годы.

Гипоксическая гипоксия - экзогенный тип гипоксии - развивается при уменьшении барометрического давления кислорода (высотная и горная болезнь) или при снижении парциального давления кислорода во вдыхаемом воздухе. При этом развивается гипоксемия (снижается РО2 в артериальной крови), насыщение гемоглобина (Hb) кислородом и общее содержание его в крови. Отрицательное влияние оказывает и гипокапния , развивающаяся в связи с компенсаторной гипервентиляцией легких. Гипокапния приводит к ухудшению кровоснабжения мозга и сердца, алкалозу, нарушению баланса электролитов во внутренней среде организма и повышению потребления тканями кислорода.

Дыхательный (легочный) тип гипоксиивозникает в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушениями вентиляционно-перфузионных отношений, или при затруднении диффузии кислорода, нарушения проходимости дыхательных путей, либо расстройства центральной регуляции дыхания.

Уменьшается минутный объем вентиляции, снижается парциальное давление кислорода в альвеолярном воздухе и напряжение кислорода в крови и к гипоксии присоединяется гиперкапния.

Кровяная гипоксия (гемический тип) возникает как следствие уменьшения кислородной емкости крови при анемиях, гидремии и нарушении способности Hb связывать, транспортировать и отдавать тканям кислород при отравлении угарным газом, при образовании метгемоглобина (МетHb) и некоторых аномалиях Hb. Для гемической гипоксии характерно сочетание нормального напряжения кислорода в артериальной крови с пониженным его содержанием в тяжелых случаях до 4-5 об%. При образовании карбоксигемоглобина (СОHb) и метгемоглобина (МетHb) насыщение оставшегося Hb и диссоциация оксиHb в тканях могут быть затруднены, и поэтому напряжение кислорода в тканях и венозной крови оказывается значительно пониженным при одновременном уменьшении артерио-венозной разницы по кислороду.

Циркуляторная гипоксия (сердечно-сосудистый тип) возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей при массивной кровопотере, обезвоживании организма, падении сердечно-сосудистой деятельности. Циркуляторная гипоксия сосудистого происхождения развивается при чрезмерном увеличении емкости сосудистого русла вследствие рефлекторных и центрогенных нарушений вазомоторной регуляции недостаточности глюкокортикоидов, при повышении вязкости крови и наличии других факторов, препятствующих нормальному продвижению крови через капиллярную сеть. Для газового состава крови характерно нормальное напряжение и содержание кислорода в артериальной крови, снижение их в венозной и высокая артерио-венозная разница по кислороду.

Тканевая гипоксия (гистотоксическая) возникает вследствие нарушения способности тканей поглощать кислород из крови или в связи с уменьшением эффективности биологического окисления из-за резкого уменьшения сопряжения окисления и фосфорилирования при угнетении биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки, например, отравление цианидами, тяжелыми металлами, барбитуратами, токсинами микробов. При этом напряжение, насыщение и содержание кислорода в артериальной крови может до определенного момента быть нормальными, а в венозной крови значительно превышают нормальные величины. Уменьшение артерио-венозной разницы по кислороду характерно для нарушения тканевого дыхания.

Гипербарическая гипоксия может быть при лечении кислородом под повышенным давлением. При этом устранение нормальной гипоксической активности периферических хеморецепторов ведет к снижению возбудимости ДЦ и угнетению легочной вентиляции. Это ведет к повышению артериального pСО2, вызывающего расширение кровеносных сосудов мозга. Гиперкапния ведет к увеличению минутного объема дыхания и гипервентиляции. В результате pСО2 в артериальной крови падает, сосуды мозга суживаются и pО2 в тканях мозга уменьшается. Начальное токсическое действие кислорода на клетку связано с ингибицией дыхательных ферментов и с накоплением перекисей липидов, вызывающих повреждение клеточных структур (особенно SH ферментные группы), изменением метаболизма в цикле трикарбоновых кислот и нарушением синтеза высокоэнергетических фосфатных соединений и образованием свободных радикалов.

Гипероксическая гипоксия (в авиации, при кислородотерапии) - может быть в виде 2х форм кислородного отравления - легочной и судорожной. Патогенез легочной формы связывают с исчезновением "опорной" функции инертного газа, токсическим действием кислорода на эндотелий сосудов легких - повышением их проницаемости, вымыванием сурфактантанта, спадением альвеол и развитием ателектаза и отека легких. Судорожная форма связана с резким возбуждением всех отделов ЦНС (особенно ствола мозга) и нарушением тканевого дыхания.

Смешанный тип гипоксии наблюдается весьма часто и представляет сочетание 2х или более основных типов гипоксии. Часто гипоксический фактор сам по себе влияет на несколько звеньев физиологических систем транспорта и утилизации кислорода. Угарный газ активно вступает в связь с 2х валентным железом Hb, в повышенных концентрациях оказывает непосредственное токсическое действие на клетки, ингибируя цитохромэнзимную систему; барбитураты подавляют окислительные процессы в тканях и одновременно угнетают ДЦ, вызывая гиповентиляцию.

Изменения обмена веществ раньше всего возникают со стороны углеводного и энергетического обмена. Во всех случаях гипоксии первичным сдвигом является дефицит макроэргов. Усиливается гликолиз, это приводит к падению содержания гликогена, нарастанию пирувата и лактата. Избыток молочной, пировиноградной и других органических кислот способствует развитию метаболического ацидоза .

Возникает отрицательный азотистый баланс. В результате расстройств липидного обмена развивается гиперкетонемия.

Нарушается обмен электролитов и в первую очередь процессы активного перемещения и распределения ионов на биологических мембранах, возрастает количество внеклеточного калия.

Последовательность изменений в клетке при гипоксии: повышение проницаемости клеточной мембраны - нарушение ионного равновесия - набухание митохондрий - стимуляция гликолиза - уменьшение гликогена - подавление синтеза и усиление распада белков - деструкция митохондрий - эргастоплазмы, внутриклеточного сетчатого аппарата - жировая декомпозиция клетки - разрушение мембран лизосом - выход гидролитических ферментов - аутолиз и полный распад клетки .

Приспособительные и компенсаторные реакции. При воздействии факторов, вызывающих гипоксию, сразу же включаются реакции, направленные на сохранение гомеостаза. Различают реакции, направленные на приспособление к относительно кратковременной острой гипоксии (возникают немедленно) и реакции, обеспечивающие приспособление к менее выраженной, но длительно существующей или повторяющейся гипоксии.

Реакции системы дыхания на гипоксию - это увеличение альвеолярной вентиляции за счет углубления и учащения дыхательных экскурсий и мобилизации резервных альвеол. Увеличение вентиляции сопровождается усилением легочного кровотока. Компенсаторная гипервентиляция может вызвать гипокапнию, которая в свою очередь компенсируется обменом ионов между плазмой и эритроцитами, усиленным выведением бикарбонатов и основных фосфатов с мочой.

Реакции системы кровообращения выражаются учащением сердечных сокращений, увеличением массы циркулирующей крови за счет опорожнения кровяных депо, увеличения венозного притока, ударного и минутного объема сердца, скорости кровотока и перераспределения крови в пользу мозга и сердца. При адаптации к длительной гипоксии может происходить образование новых капилляров. В связи с гиперфункцией сердца и изменениями нейро-эндокринной регуляции может наступить гипертрофия миокарда, имеющая компенсаторно-приспособительный характер.

Реакции системы крови проявляются повышением кислородной емкости крови за счет усиленного вымывания эритроцитов из костного мозга и активации эритропоэза за счет усиленного образования эритропоэтических факторов. Большое значение имеют свойства Hb связывать почти нормальное количество кислорода даже при значительном снижении парциального давления кислорода в альвеолярном воздухе и в крови легочных капилляров. Вместе с тем Hb способен отдавать большее количество кислорода даже при умеренном снижении pО2 в тканевой жидкости. Усилению диссоциации оксигемоглобина способствует ацидоз.

Тканевые приспособительные механизмы - ограничение функциональной активности органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода, увеличение сопряженности окисления и фосфорилирования, усиление анаэробного синтеза АТФ за счет активации гликолиза. Увеличивается синтез глюкокортикоидов, которые стабилизируют мембраны лизосом, активируют ферментные системы дыхательной цепи. Увеличивается количество митохондрий на единицу массы клетки.

Принципы диагностики.

Диагностика основывается на признаках поражения головного мозга и динамике неврологических расстройств, данных исследования гемодинамики (А/Д, ЭКГ, сердечный выброс), газообмена, определения кислорода во вдыхаемом воздухе, содержания газов в альвеолах, диффузии газов через мембрану альвеол; определение транспорта кислорода с кровью; определение pО2 в крови и тканях, определение КЩР, буферных свойств крови, биохимических показателей (молочная и пировиноградная кислота, сахар и мочевина крови).

Терапия и профилактика.

В связи с тем, что в клинической практике обычно встречаются смешанные формы гипоксии, лечение ее должно быть комплексным, и связанным с причиной гипоксии в каждом конкретном случае.

Во всех случаях гипоксии - дыхательной, кровяной, циркуляторной универсальным приемом является гипербарическая оксигенация. Необходимо разорвать порочные круги при ишемиях, сердечной недостаточности. Так при давлении 3 атмосферы в плазме растворяется достаточное количество кислорода (6 объемных %) даже без участия эритроцитов, в ряде случаев бывает необходимо добавить 3-7 % СО2 для стимуляции ДЦ, расширения сосудов мозга и сердца, предотвращения гипокапнии.

При циркуляторной гипоксии назначают сердечные и гипертензионные средства, переливание крови. При гемическом типе:

Переливают кровь или эритромассу, стимулируют гемопоэз, применяют искусственные переносчики кислорода - субстраты перфторуглеводов (перфторан);

Удаление продуктов метаболизма - гемосорбция, плазмофорез;

Борьба с осмотическим отеком - растворы с осмотическими веществами;

При ишемии - антиоксиданты, стабилизаторы мембран, стероидные гормоны;

Введение субстратов, заменяющих функцию цитохромов - метиленовая синь, витамин С;

Повышение энергетического снабжения тканей - глюкоза.

Во внутренней среде человека и высших животных в естественных условиях содержится кислород, углекислый газ, азот и ничтожно малое количество инертных газов. Физиологически значимыми являются О 2 и СО 2 , находящиеся в организме в растворенном и биохимически связанном состоянии. Именно эти два газа и определяют газовый гомеостаз организма. Содержание О 2 и СО 2 является важнейшими регулируемыми параметрами газового состава внутренней среды.

Постоянство газового состава само по себе не имело бы для организма никакого смысла, если бы оно не обеспечивало изменяющиеся потребности клеток в доставке О 2 и удалении СО 2 . Организму требуется не постоянный газовый состав крови, ликвора, интерстициальной жидкости, а обеспечение нормального тканевого дыхания во всех клетках и органах. Это положение справедливо для любого гомеостатического механизма и гомеостаза организма в целом.

О 2 поступает в организм из воздуха, СО 2 образуется в клетках в организме в результате биологического окисления (основная масса - в цикле Кребса) и выделяется через легкие в атмосферу. Это встречное перемещение газов проходит через различные среды организма. Содержание их в клетках определяется, прежде всего, интенсивностью окислительных процессов. Уровень активности различных органов и тканей в процессе приспособительной деятельности непрерывно меняется. Соответственно происходят локальные изменения концентрации О 2 и СО 2 в клетках. При особенно напряженной деятельности, когда фактическая доставка О 2 к клеткам отстает от кислородного запроса, может возникать кислородная задолженность.

16.1.1. Механизмы регуляции газового состава

16.1.1.1. Локальный механизм

Основан на гомеостатических свойствах гемоглобина. Они осуществляются, во-первых, благодаря наличию аллостерических взаимодействий О 2 с белковыми субъединицами молекулы гемоглобина, во-вторых, благодаря наличию в мышцах миоглобина (Рис. 33).

S-образная кривая насыщения гемоглобина кислородом обеспечивает быстрое нарастание диссоциации (распада) комплекса НbO 2 при падении давления О 2 от сердца к тканям. Повышение температуры и ацидоз ускоряет распад комплекса НbО 2 , т.е. О 2 уходит в ткани. Снижение температуры (гипотермия) делает этот комплекс более стабильным и О 2 труднее уходит в ткани (одна из возможных причин гипоксии при гипотермии).

Сердечная мышца и скелетная мускулатура обладают еще одним "местным" гомеостатическим механизмом. В момент сокращения мышц кровь выталкивается из сосудов, вследствни чего О 2 не успевает диффундировать из сосудов в миофибриллы. Этот неблагоприятный фактор в значительной мере компенсируется содержащимся в миофибриллах миоглобином, запасающим О 2 непосредственно в тканях. Сродство миоглобина к О 2 больше чем у гемоглобина. Так, например, миоглобин насыщается О 2 на 95% даже из капиллярной крови, в то время как для гемоглобина при этих величинах рО 2 уже развивается выраженная диссоциация. Наряду с этим, при дальнейшем снижении рО 2 миоглобин очень быстро отдаст почти весь запасенный О 2 . Таким образом, миоглобин выполняет функцию демпфера резких перепадов кислородного снабжения работающих мышц.

Однако локальные механизмы газового гомеостаза лишены способности к сколько-нибудь длительной самостоятельной деятельности и могут осуществлять свои функции лишь на основе общих механизмов гомеостаза. Именно кровь служит той универсальной средой, из которой клетки черпают О 2 и куда отдают конечный продукт окислительного метаболизма - СО 2 .

Соответственно, организм располагает разнообразными и мощными системами гомеостатической регуляции, обеспечивающими сохранение физиологических пределов колебаний газовых показателей крови в норме и возвращение этих показателей в физиологические границы после их временного отклонения под влиянием патологических воздействий.

16.1.1.2. Общий механизм регуляции газового состава крови

Структурные основы.

  1. В конечном итоге узловым механизмом является внешнее дыхание, регулируемое дыхательным центром.
  2. Другой ключевой структурный момент - роль мембран в газовом гомеостазе. На уровне альвеолярных мембран происходят начальные и завершающие процессы газообмена организма с внешней средой, позволяющие функционировать всем остальным звеньям газового гомеостаза.

В состоянии покоя в организм поступает около 200 мл О 2 в минуту н выделяется примерно такое же количество СО 2 . В условиях напряженной деятельности (например, при компенсации кровопотери) количество поступающего О 2 и выделяющегося СО 2 может увеличиваться в 10-15 раз, т.е. система внешнего дыхания рсполагает огромным потенциальным резервом, являющимся решающим компонентом ее гомеостатической функции.

16.1.1.3. Регуляция минутного объема дыхания

Важнейшим регулируемым процессом, от которого зависит постоянство состава альвеолярного воздуха, является минутный объем дыхания (МОД), определяемый экскурсией грудной клетки и диафрагмы.

МОД=частота дыхательных движений х (дыхательный объем - объем мертвого пространства трахеи и крупных бронхов). Приблизительно в норме МОД=16 х (500 мл - 140 мл) = 6 л.

Характер и интенсивность дыхательных движений зависит от деятельности основного управляющего звена системы регуляции внешнего дыхания - дыхательного центра. В нормальных условиях СО 2 и О 2 являются безусловно доминирующими критериями в системе регуляции дыхания. Различного рода "негазовые" влияния (температура, боль, эмоции) могут осуществляться при условии сохранения регулирующего влияния СО 2 и О 2 (Рис. 34).

16.1.1.4. Регуляция по СO 2

Важнейшим регулятором внешнего дыхания, носителем специфического возбуждающего эффекта на дыхательный центр является СО 2 . Таким образом, регуляция по СО 2 связана с его непосредственным влиянием на дыхательный центр.

Кроме непосредственного влияния на центр продолговатого мозга (1), бесспорно возбуждение дыхательного центра под влиянием импульсов с периферических рецепторов сино-каротидной (2а) и кардио-аортальмой зон (2б), возбуждаемых СО 2 .

16.1.1.5. Регуляция по О 2

Происходит преимущественно рефлекторное возбуждение дыхательного центра со стороны хеморецепторов сино-каротидной зоны при снижении рО 2 крови. Исключительно высокая чувствительность рецепторов этих структур к О 2 объясняется высокой скоростью окислительных процессов. Ткань клубочка потребляет 1 мл О 2 /мин на грамм сухой ткани, что в несколько раз больше подобной величины для ткани головного мозга.

16.2. Патология дыхания

Любые нарушения рО 2 и рСО 2 крови приводят к изменениям активности дыхательного центра, регуляции механизма обеспечение газового гомеостаза.

16.2.1. Нарушения газового гомеостаза

Изменения содержания рO 2 , рСО 2 вызваны: 16.2.1.1. За счет нарушения аппарата внешнего дыхания (обеспечение насыщения кропи кислородом и удаления СO 2). Примерами могут быть: накопление экссудата в легких, болезни дыхательных мышц, "аденоидная маска" у детей, дифтеритический и ложный крупы. 16.2.1.2. За счет нарушения аппарата внутреннего дыхания (транспорт и использовании O 2 , СO 2). Причины и патогенез этих патологических состояний достаточно хорошо изложены в учебнике по патофизиологии А.Д.Адо и соавторов, И.H.Зайко и соавторов, поэтому более подробно остановимся на следствиях нарушения как аппарата внешнего, так и внутреннего дыхания - кислородном голодании, т.е. гипоксии. 16.2.1.3. Итак, кислородное голодание тканей (гипоксия) - состояние, возникающее при нарушении доставки или потребления O 2 . Крайнее выражение гипоксии - аноксия (отсутствие О 2 в крови и тканях).

16.2.1.4. Классификация гипоксий

Чтобы сознательно решить для себя эту проблему, следует помнить, что основным условием неравновесия как признака жизни, является энергообеспечение. Вдыхаемый нами кислород нужен для окислительных процессов, главный из которых - образование АТФ в дыхательной цепи. Роль кислорода в ней - снимать электроны с последнего из цепи цитохромов, т.е. быть акцептором. В сопряженном с этим процессом акте фосфорилирования и возникает АТФ в митохондриях аэробов.

В настоящее время выделяется 5 патогенетических типов гипоксий. Их легко запомнить, проследив путь движения кислорода из атмосферы до дыхательной цепи (Рис. 35).

  • 1-й блок поступления кислорода - результат уменьшения его во вдыхаемом воздухе. Этот вид гипоксии активно изучал на себе выдающийся отечественный патофизиолог Н.Н.Сиротинин, поднимаясь в барокамере на высоту около 8500 м. У него возникали синюшность, потоотделение, подергивание конечностей, потеря сознания. Им установлено, что потеря сознания является наиболее надежным критерием для установления высотной болезни.
  • 2-й блок - возникает при заболеваниях внешнего аппарата дыхания (заболевания легких и дыхательного центра), поэтому носит название дыхательной гипоксии.
  • 3-й блок - возникает при заболеваниях сердечно-сосудистой системы, что ухудшает транспорт кислорода и носит название сердечно-сосудистой (циркуляторной) гипоксии.
  • 4-й блок - возникает при любых повреждениях транспортной системы кислорода крови - эритроцитов - и носит название кровяной (гемической) гипоксии. Все четыре вида блоков ведут к гипоксемии (снижению рО 2 в крови).
  • 5-й блок - возникает при повреждениях дыхательной цепи, например, мышьяком, цианидами без явления гипоксемии.
  • 6-й блок - смешанная гипоксия (например, при гиповолемическом шоке).

16.2.1.5. Острая и хроническая гипоксии

Все виды гипоксии, в свою очередь, делятся на острые и хронические. Острые возникают чрезвычайно быстро (например, при 3-м блоке - обильная кровопотеря, при 4-м - отравление СО, при 5-м - отравление цианидами).

Полное отсутствие кислорода - аноксия - возникает при состоянии удушья, так называемой асфиксии. В педиатрии известна асфиксия новорожденных. Причиной является угнетение дыхательного центра или аспирация околоплодных вод. В стоматологии асфиксия возможна при травмах н заболеваниях челюстно-лицевой области и может носить характер аспирационной (затек в дыхательное дерево крови, слизи, рвотных масс), обтурационная (закупорка бронха, трахеи инородными телами, осколками костей, зубов), дислокационной (смещение поврежденных тканей).

Следствием асфиксии является гибель наиболее чувствительных тканей. Из всех функциональных систем к действию гипоксии наиболее чувствительна кора больших полушарий головного мозга. Причины высокой чувствительности: кора образована в основном телами нейронов, богатых тельцами Ниссля - рибосомами, на которых с исключительной интенсивностью идет биосинтез белка (вспомните процессы долговременной памяти, аксональный транспорт). Так как этот процесс является исключительно энергоемким, он нуждается в значительных количествах АТФ, и не удивительно, что потребление кислорода и чувствительность к его нехватке у коры больших полушарий чрезвычайно высока.

Второй особенностью коры является в основном аэробный путь образования АТФ. Гликолиз - бескислородный путь образования АТФ - в коре выражен крайне слабо и не в состоянии компенсировать недостаток АТФ в условиях гипоксии.

16.2.1.6. Полное и неполное выключение коры головного мозга при острой гипоксии

При гипоксии возможна неполная локальная гибель корковых нейронов, либо полное выключение коры больших полушарий. Полное возникает в клинических условиях при остановке сердца более чем на 5 минут. Например, во время хирургических манипуляций, проведении реанимационных мероприятий при состоянии клинической смерти. При этом личность необратимо утрачивает способность увязывать поведение с законами общества, т.е. теряется социальная детерминированность (потеря способности адаптации к окружающим условиям, непроизвольное мочеиспускание и дефекация, потеря речи и т.д.). Через некоторое время такие больные погибают. Таким образом, полное выключение коры больших полушарий сопровождается необратимой потерей условных рефлексов у животных и общественных, коммуникативных функций у человека.

При частичном выключении коры больших полушарий, например, в результате локальной гипоксии при тромбозе сосудов или кровоизлиянии в мозг, теряется функция коркового анализатора в месте аноксии, но, в отличие от полного выключения, в данном случае возможно восстановление утерянной функции за счет периферической части анализатора.

16.2.1.7. Хроническая гипоксии

Хроническая гипоксия возникает при длительном нахождении под влиянием пониженного атмосферного давления и, соответственно, недостатка потребления кислорода, при нарушении дыхательной и сердечно-сосудистой деятельности. Симптоматика хронической гипоксии обусловлена низкой скоростью протекания биохимических и физиологических процессов вследствие нарушения образования макроэрга АТФ. Дефицит АТФ лежит в основе развития симптомов хронической гипоксии. В стоматологии примером может быть развитие пародонтоза при микроангиопатии.


16.2.1.8. Клеточные механизмы патологического действия гипоксии

На основании рассмотренного материала мы можем сделать 1-й вывод: гипоксия любой этиологии сопровождается дефицитом АТФ. Патогенетическим звеном является отсутствие кислорода, который снимает электроны с дыхательной цепи.

Вначале при гипоксии происходит восстановление электронами всех цитохромов дыхательной цепи и перестает генерироваться АТФ. При этом происходит компенсаторное переключение углеводного обмена на анаэробное окисление. Недостаток АТФ снимает его ингибирующее влияние на фосфофруктокиназу - фермент начала гликолиза, усиливается липолиз и глюконеогенсз от пирувата, образующегося из аминокислот. Но это менее эффективный путь образования АТФ. Кроме того, в результате неполного окисления глюкозы по этому пути образуется молочная кислота - лактат. Накопление лактата приводит к внутриклеточному ацидозу.

Отсюда 2-й принципиальный вывод: гипоксия любой этиологии сопровождается ацидозом. Весь дальнейший ход событий, ведущий к гибели клетки, связан с 3-м фактором - повреждением биомембран. Рассмотрим это наиболее подробно на примере мембран митохондрий.

Тканевая гипоксия и повреждение биомембран (БМ)

Тканевая гипоксия - до некоторой степени нормальное состояние для интенсивно функционирующей ткани. Однако, если гипоксия продолжается десятки минут, то она вызывает повреждения клетки, обратимые только на ранних этапах. Природа точки "необратимости" - проблема общей патологии - лежит на уровне биомембран клетки.


Основные этапы повреждения клетки

  1. Дефицит АТФ и накопление Са 2+ . Начальный период гипоксии прежде всего приводит к повреждению "энергетических машин" клетки - митохондрий (MX). Снижение доступа кислорода приводит к снижению образования АТФ в дыхательной цепи. Важным следствием дефицита АТФ является неспособность таких MX накапливать Са 2+ (откачивать из цитоплазмы)
  2. Накопление Са 2+ и активация фосфолипаз. Для нашей проблемы важно то, что Ca 2+ активирует фосфолипазы, вызывающие гидролиз фосфолипидного слоя. Мембраны постоянно испытывают действие разностей потенциалов: от 70 мв на плазматической мембране до 200мв на MX. Такую разность потенциалов может выдержать только очень прочный изолятор. Фосфолипидный слой биомембран (БМ) и есть природный изолятор.
  3. Активация фосфолипаз - дефекты в БМ - электрический пробой. Даже небольшие дефекты в таком изоляторе будут вызывать явление электрического пробоя (быстрое увеличение электрического тока через мембраны, приводящие к их механическому разрушению). Фосфолипазы, разрушая фосфолипиды, и вызывают такие дефекты. Важно, что БМ могут быть пробиты электрическим током под воздействием потенциала, генерируемого самой БМ или электротоком, приложенным извне.
  4. Электрический пробой - нарушение барьерной функции биомембраны. БМ становятся проницаемыми для ионов. Для MX это - К + , которого много в цитоплазме. Для плазматической мембраны - это натрий в экстрацеллюлярном пространстве.

    Итог: ионы калия и натрия движутся внутрь MX или клетки, приводя к повышению осмотического давления. За ними "хлынут" потоки воды, что приведет к отеку MX и отеку клетки. Такие раздувшиеся MX не могут генерировать АТФ и клетки погибают.

Вывод. Гипоксия любой этиологии сопровождается триадой: дефицитом АТФ, ацидозом и повреждением биомембран. Отсюда терапия гипоксических состояний должна включить ингибиторы фосфолипаз, например, витамин Е.

16.2.1.9. Гомеостатические механизмы при гипоксии

Базируются на основе рассмотренных выше гомеостатических механизмов поддерживания газового состава крови. Вернемся к Рис. 35.

  1. Реакция аппарата внешнего дыхания проявляется в виде одышки. Одышка - это изменение ритма и глубины дыхания при гипоксии. В зависимости от длительности вдоха и выдоха различают экспираторную и инспираторную одышку.

    Экспираторная - характеризуется удлинением фазы выдоха вследствие недостаточности эластической силы тканей легких. В норме активация выдоха происходит за счет этих сил. При возрастании сопротивления воздушному потоку за счет спазма бронхиол эластической силы легких недостаточно и подключаются межреберные мышцы, диафрагма.

    Инспираторная - характеризуется удлинением фазы вдоха. Примером может быть стенотическое дыхание вследствие сужения просвета трахеи и верхних дыхательных путей при отеке гортани, дифтерии, попадании инородных тел.

    Но позволительно задать вопрос: всякая ли одышка является компенсаторной? Вспомним, что одним из показателей эффективности дыхания является МОД. В формулу его определения входит понятие "объем мертвого пространства" (см. 16.1.1.3.). Если одышка будет частой и поверхностной (тахипноэ), то это приведет к снижению дыхательного объема при сохранении объема мертвого пространства и результатом поверхностного дыхания будет маятникообразное движение воздуха мертвого пространства. В таком случае, тахипноэ - это совсем не компенсация. Таковой можно считать только частое и глубокое дыхание.

  2. Вторым гомеостатическим механизмом является усиление транспорта кислорода, возможное за счет увеличения скорости кровотока, т.е. белее частых и сильных сокращений сердца. Ориентировочно нормальный минутный объем сердца (МОС) равен ударному объему, умноженному на частоту сердечных сокращений, т.е. МОС = 100 х 60 = 6 л. При тахикардии МОС = 100 х 100 = 10 л. Но в случае продолжающейся гипоксии, приводящей к дефициту энергии, долго ли сможет работать этот компенсаторный механизм? Нет, несмотря на довольно мощную систему гликолиза в миокарде.
  3. Третьим гомеостатическим механизмом является усиление эритропоэза, что ведет к увеличению содержания Нb в крови и повышению транспорта кислорода. При острой гипоксии (кровопотеря) увеличение количества эритроцитов осуществляется за счет выброса их из депо. При хронической гипоксии (нахождение в горах, длительные заболевания сердечно-сосудистой системы) повышается концентрация эритропоэтина, усиливается кроветворная функция костного мозга. Поэтому альпинисты проходят период акклиматизации перед штурмом горных вершин. Н.Н.Сиротинин после стимуляции гемопоэза (сок лимона + 200г сахарного сиропа + аскорбинка) "поднялся" в барокамере до высоты 9750 м.

    Другой интересный пример разнообразия фенотипических приспособлений организма к неблагоприятным условиям внешней среды привел отечественный ученый Чижевский. Он заинтересовался, почему у горных баранов такие мощные (до 7 кг) рога, носить которые достаточно тяжело высоко в горах. Ранее предполагалось, что бараны амортизируют рогами удар о землю при прыжке через пропасть. Чижевским было обнаружено, что в рогах баранов размещены дополнительные резервуары для костного мозга.

  4. Если все предыдущие гомеостатические механизмы были направлены на доставку кислорода, то последний, 4-й механизм - на уровне тканей, направлен прямо на устранение дефицита АТФ. Включение компенсаторных механизмов (ферментов липолиза, гликолиза, переаминирования, глюконеогенеза) в этом случае обусловлено воздействием более высокого уровня регуляции гемопоэза - эндокринной системой. Гипоксия - неспецифичсский стрессор, на который организм отвечает стимуляцией САС и стресс-реакцией системы гипоталамус - гипофиз - кора надпочечников, включающей дополнительные пути энергообеспечения: липолиз, глюконеогенез.

© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции