25.08.2019

Чем является нейрон для нервной системы. Нейронная организация нервной системы. Передача информации нервными клетками


Была представлена модель нервной системы, опишу теорию и принципы, которые легли в её основу.

Теория основана на анализе имеющейся информации о биологическом нейроне и нервной системе из современной нейробиологии и физиологии мозга.

Сначала приведу краткую информацию об объекте моделирования, вся информация изложена далее, учтена и использована в модели.

Мы заключаем это из экспериментов, демонстрирующих активность мозга. Однако, как работает мозг в деталях, большая загадка по сей день для большинства упомянутых аспектов. Макроскопический взгляд: человеческий мозг. Мозг заполняет внутренность наших черепов и состоит из нескольких долей. Существует внешняя часть - серое вещество - и внутренняя часть - белое вещество, как показано поперечным сечением.

Мозг в основном состоит из нейронов и опорных клеток. Что касается большинства других органов, есть кровеносные сосуды и иммунные клетки. Нейроны имеют основное тело и множество расширений. Дендриты - это расширения нейрона, которые принимают сигналы, а затем аксон передает электрические сигналы другим нейронам. Основное тело немного темнее дендритов или аксонов и преимущественно расположено в сером веществе, тем самым придавая ему свой цвет. Аксоны покрыты белым жирным веществом и делают белое вещество нашего мозга.

НЕЙРОН

Нейрон является основным функциональным элементом нервной системы, он состоит из тела нервной клетки и её отростков. Существуют два вида отростков: аксоны и дендриты. Аксон – длинный покрытый миелиновой оболочкой отросток, предназначенный для передачи нервного импульса на далекие расстояния. Дендрит – короткий, ветвящийся отросток, благодаря которым происходит взаимосвязь с множеством соседних клеток.

Мозг получает вход от черепных нервов и мозгового вещества. Эти сигналы обрабатываются нашим мозгом. Вы можете почувствовать это прямо сейчас, потому что вы сознательно знаете, что читаете эту страницу - это сознательный визуальный ввод. Также вы слышите звуки, вы чувствуете эмоции, чувствуете, что вас тронули, щекотали и так далее. Все это осознанные реакции на ввод. Конечно, мы реагируем на эти входы, меняя наше настроение, позицию или мышление. Движения тела управляются мозгом через нервы и мозговой мозг.

Таким образом, черепно-мозговые нервы и мозговой мозг имеют волокна, имеющие дело с входными данными и другие, которые имеют дело с выходом. Есть много других функций мозга, которые являются подсознательными, такими как дыхание, для которых нам не нужно сознательно думать. Мозг контролирует все другие системы органов тела и их функции, такие как пищеварение, дыхание и т.д.

ТРИ ТИПА НЕЙРОНОВ

Нейроны могут сильно отличаться по форме, размерам и конфигурации, не смотря на это, отмечается принципиальное сходство нервной ткани в различных участках нервной системе, отсутствуют и серьезные эволюционные различия. Нервная клетка моллюска Аплизии может выделять такие же нейромедиаторы и белки, что и клетка человека.

В зависимости от конфигурации выделяют три типа нейронов:


Мозг фактически связан через нервы почти с любым другим органом тела. Мы можем ощущать верхнюю часть головы, наши подсказки, и мы можем нахмуриться, а также ходить. Также с мозгом связаны органы, такие как желудок, тимус или селезенка. Мы не можем чувствовать эти органы, что является примером бессознательной обработки ввода и вывода мозгом.

Мозг соединяется с другими органами с помощью длинных нервов, которые состоят из нейронов. Электрические сигналы вызывают реакции в соединенных органах, тогда как сенсорные нервные окончания помогают собирать вход. Например, в мышцах электрические сигналы преобразуются в химические сигналы, вызывающие мышечное сокращение через гипотезу скользящей нити.

А) рецепторные, центростремительные, или афферентные нейроны, данные нейроны имеют центростремительный аксон, на конце которого имеются рецепторы, рецепторные или афферентные окончания. Эти нейроны можно определить, как элементы, передающие внешние сигналы в систему.

Б) интернейроны (вставочные, контактные, или промежуточные) нейроны, не имеющие длинных отростков, но имеющие только дендриты. Таких нейронов в человеческом мозгу больше чем остальных. Данный вид нейронов является основным элементом рефлекторной дуги.

Упражнение вашего мозга будет держать его в отличной форме и поможет вам продолжать учиться и становиться все быстрее в понимании. Это включает в себя чтение, решение загадок или просто активное участие: на открытом воздухе, изучающих природу, в помещении, занимающемся спортом. У вас должен быть здоровый баланс различных действий, чтобы вы были в форме и умны. Известно, что некоторые виды спорта, такие как бокс или прыжки с банджи, наносят ущерб мозгу, и вы должны избегать их.

Вы не должны воспринимать клетки в своем мозгу как должное. Они существуют в вихре с электрическими и химическими сообщениями, причем информация идет так и так. У всех существ с мозгом клетки Брайана работают вместе, чтобы контролировать свои тела и заставить их вести себя уникальными способами. Но не все животные способны выполнять те же самые задачи. Итак, каковы различия между мозгами, скажем, мыши и человека, которые делают их лучше или хуже при определенных задачах?

В) моторные, центробежные, или эфферентные, они имеют центростремительный аксон, который имеет эфферентные окончания передающий возбуждение мышечным или железистым клеткам. Эфферентные нейроны служат для передачи сигналов из нервной среды во внешнюю среду.

Обычно в статьях по искусственным нейронным сетям оговаривается наличие только моторных нейронов (с центробежным аксоном), которые связаны в слои иерархической структуры. Подобное описание применимо к биологической нервной системе, но является своего рода частным случаем, речь идет о структурах, базовых условных рефлексов. Чем выше в эволюционном значении нервная система, тем меньше в ней превалируют структуры типа «слои» или строгая иерархия.

Ну, мы знаем, что они очень разные по размеру, и у каждого есть особые способности. Например, мыши очень хорошо перемещаются через лабиринты, чтобы найти пищу из-за их большого обоняния. Люди также не могут использовать свои носы, но могут найти свой путь, используя карты или электронику.

Многие ученые задавались вопросом, в чем причина этих различий. Некоторое время некоторые думали, что размер мозга был ответственным. Но, оказывается, это не единственная причина. Мозги людей и других животных состоят в основном из клеток, называемых нейронами. Нейроны - это специальные клетки, которые передают сигналы для обработки информации для наших органов. Нейроны посылают и получают эту информацию через ветви на основном теле клетки, называемые дендритами. Затем дендриты отправляют сообщения в другую часть нейрона - аксона.

ПЕРЕДАЧА НЕРВНОГО ВОЗБУЖДЕНИЯ

Передача возбуждения происходит от нейрона к нейрону, через специальные утолщения на концах дендритов, называемых синапсами. По типу передачи синапсы разделяют на два вида: химические и электрические. Электрические синапсы передают нервный импульс непосредственно через место контакта. Таких синапсов в нервных системах очень мало, в моделях не будут учитываться. Химические синапсы передают нервный импульс посредством специального вещества медиатора (нейромедиатора, нейротрансмиттера), данный вид синапса широко распространен и подразумевает вариативность в работе.
Важно отметить, что в биологическом нейроне постоянно происходят изменения, отращиваются новые дендриты и синапсы, возможны миграции нейронов. В местах контактов с другими нейронами образуются новообразования, для передающего нейрона - это синапс, для принимающего - это постсинаптическая мембрана, снабжаемая специальными рецепторами, реагирующими на медиатор, то есть можно говорить, что мембрана нейрона - это приемник, а синапсы на дендритах - это передатчики сигнала.

СИНАПС


Аксоны и дендриты соединяют нейроны, чтобы они могли разговаривать друг с другом. Эти соединения образуют большую сеть в мозге и помогают разным частям разговаривать друг с другом. Это очень важно для повседневного функционирования, например, для понимания того, что мы видим или чтобы мы знали, что мы голодны.

Рефлекторная дуга: определение и краткая характеристика

То, как нейроны общаются друг с другом, похоже на игру в телефоне. Вы думаете о сообщении, а затем прошептываете его в ухо своему другу. Основываясь на том, что слышит ваш друг, он или она скажет следующему человеку точно, что было сказано. Вы и ваши друзья могут считаться нейронами, а сообщения, которые вы рассказываете друг другу, - это передача электрических или химических сигналов от нейрона к нейрону.

При активации синапса он выбрасывает порции медиатора, эти порции могут варьироваться, чем больше выделится медиатора, тем вероятнее, что принимаемая сигнал нервная клетка будет активирована. Медиатор, преодолевая синоптическую щель, попадает на постсинаптическую мембрану, на которой расположены рецепторы, реагирующие на медиатор. Далее медиатор может быть разрушен специальным разрушающим ферментом, либо поглощен обратно синапсом, это происходит для сокращения времени действия медиатора на рецепторы.
Так же помимо побудительного воздействия существуют синапсы, оказывающие тормозящее воздействие на нейрон. Обычно такие синапсы принадлежат определенным нейронам, которые обозначаются, как тормозящие нейроны.
Синапсов связывающих нейрон с одной и той же целевой клеткой, может быть множество. Для упрощения примем, всю совокупность, оказываемого воздействия одним нейроном, на другой целевой нейрон за синапс с определённой силой воздействия. Главной характеристикой синапса будет, является его сила.

Пространство между вашим ртом и ухом вашего друга в этой игре также очень важно для отправки сообщения. Если будет очень шумно, возможно, будет более сложно разделить ваше сообщение. Точно так же пространство между нейронами может быть столь же важным, чтобы помочь нейронам отправлять информацию.

Место встречи между двумя нейронами называется синапсом. Нейроны используют синапс для передачи сообщений и обмена информацией с другими нейронами. Как только сигнал получен из синапса, он будет передавать этот сигнал на следующий нейрон. Этот процесс происходит во всем мозгу и остальной части тела.

СОСТОЯНИЕ ВОЗБУЖДЕНИЯ НЕЙРОНА

В состоянии покоя мембрана нейрона поляризована. Это означает, что по обе стороны мембраны располагаются частицы, несущие противоположные заряды. В состоянии покоя наружная поверхность мембраны заряжена положительно, внутренняя – отрицательно. Основными переносчиками зарядов в организме являются ионы натрия (Na+), калия (K+) и хлора (Cl-).
Разница между зарядами поверхности мембраны и внутри тела клетки составляет мембранный потенциал. Медиатор вызывает нарушения поляризации – деполяризацию. Положительные ионы снаружи мембраны устремляются через открытые каналы в тело клетки, меняя соотношение зарядов между поверхностью мембраны и телом клетки.



Изменение мембранного потенциала при возбуждении нейрона

Недавно ученые узнали, что синапсы могут унывать, что означает, что их способности уменьшаются. После того, как два нейрона отправляют сигналы друг другу, они не могут отправить другой сигнал на короткое время. Любой сигнал, проходящий через синапс в течение этого времени, не будет передаваться в следующую ячейку. Ученые задавались вопросом, было ли время депрессии разным для мозга человека и мыши. Если это так, то это может объяснить, что заставляет людей обрабатывать больше информации и делать более сложные вещи.

Исследователи использовали кусочки мозга от людей и мышей, чтобы проверить их идею. Пары нейронов в этих срезах мозга были протестированы, чтобы увидеть, как быстрая информация могла перемещаться между ними. Ученые вынудили бы нейроны посылать сигналы с помощью электрического тока. Ток активирует нейроны таким же образом, как мозг. Используя некоторые сложные уравнения и предыдущую работу, ученые смогли исследовать время депрессии в синапсе человека и сравнить его с временем в мыши.

Характер изменений мембранного потенциала при активации нервной ткани неизменен. Независимо от того кокой силы воздействия оказывается на нейрон, если сила превышает некоторое пороговое значение, ответ будет одинаков.
Забегая вперед, хочу отметить, что в работе нервной системы имеет значение даже следовые потенциалы (см. график выше). Они не появляются, вследствие каких-то гармонических колебаний уравновешивающих заряды, являются строгим проявлением определённой фазы состояния нервной ткани при возбуждении.

Ученые обнаружили, что время депрессии было намного короче в человеческих нейронах по сравнению с мышами-нейронами. Более короткие впадины позволяют нейронам снова начать стрельбу. Из-за этого человеческие нейроны могут отправлять больше сообщений за такое же количество времени. Мыши нейронов могут занять до десяти раз дольше, чтобы восстановить и отправить другое сообщение.

Быстрое восстановление синапсов в мозге человека позволяет клеткам выполнять основные функции быстрее, чем в мозге мыши. Скажем, один нейрон получает сообщения от многих других. Если синапсы между этим нейроном и другими пациентами имели длительное время депрессии, изменение передаваемой информации не могло бы пересекать синапс в течение более длительного периода времени.

ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ВЗАИМОДЕЙСТВИЯ

Итак, далее приведу теоретические предположения, которые позволят нам создавать математические модели. Главная идея заключается во взаимодействии между зарядами формирующихся внутри тела клетки, во время её активности, и зарядами с поверхностей мембран других активных клеток. Данные заряды являются разноименными, в связи этим можно предположить, как будут располагаться заряды в теле клетки под воздействием зарядов других активных клеток.


В принципе, нейроны перестают хотеть играть в телефон друг с другом, и поэтому новая информация не может быть передана. Тем не менее, человеческие нейроны, как правило, более взволнованы этой игрой и нелегко устали от нее. Ученые полагают, что это может объяснить, почему люди могут делать сложные вещи, которые другие животные не могут сделать, например, использовать карту для навигации по городу.

Виды двигательных нейронов

Нельзя отрицать, что человеческий мозг очень сложный. Ученые теперь знают, что и размер мозга, и способность нейронов общаться друг с другом являются важными частями в головоломке того, как люди быстро выполняют сложные задачи. Ученым придется продолжить свою работу, чтобы узнать, есть ли еще история.

Можно сказать, что нейрон чувствует активность других нейронов на расстоянии, стремится направить распространения возбуждения в направлении других активных участков.
В момент активности нейрона можно рассчитать определённую точку в пространстве, которая определялась бы, как сумма масс зарядов, расположенных на поверхностях других нейронов. Указанную точку назовем точкой паттерна, её месторождение зависит от комбинации фаз активности всех нейронов нервной системы. Паттерном в физиологии нервной системы называется уникальная комбинация активных клеток, то есть можно говорить о влиянии возбуждённых участков мозга на работу отдельного нейрона.
Нужно представлять работу нейрона не просто как вычислителя, а своего рода ретранслятор возбуждения, который выбирает направления распространения возбуждения, таким образом, формируются сложные электрические схемы. Первоначально предполагалось, что нейрон просто избирательно отключает/включает для передачи свои синапсы, в зависимости от предпочитаемого направления возбуждения. Но более детальное изучение природы нейрона, привело к выводам, что нейрон может изменять степень воздействия на целевую клетку через силу своих синапсов, что делает нейрон более гибким и вариативным вычислительным элементом нервной системы.

Слово «сердце» является анаграммой для слова «земля». Следовательно, фраза «дом - это то, где сердце». Знаете ли вы, что человеческое сердце - это орган, который генерирует самое сильное электромагнитное поле любого органа человеческого тела? Фактически, электромагнитное поле вашего сердца можно измерить до нескольких футов от вашего тела. Кроме того, это энергетическое поле изменяется по отношению к вашим эмоциям. Одна вещь, которую вы должны знать об электромагнитном поле, состоит в том, что каждый орган и клетка вашего тела генерируют энергетическое поле.

Какое же направление для передачи возбуждения является предпочтительным? В различных экспериментах связанных с образованием безусловных рефлексов, можно определить, что в нервной системе образуются пути или рефлекторные дуги, которые связывают активируемые участки мозга при формировании безусловных рефлексов, создаются ассоциативные связи. Значит, нейрон должен передавать возбуждения к другим активным участкам мозга, запоминать направление и использовать его в дальнейшем.
Представим вектор начало, которого находится в центре активной клети, а конец направлен в точку паттерна определённую для данного нейрона. Обозначим, как вектор предпочитаемого направления распространения возбуждения (T, trend). В биологическом нейроне вектор Т может проявляться в структуре самой нейроплазмы, возможно, это каналы для движения ионов в теле клетки, или другие изменения в структуре нейрона.
Нейрон обладает свойством памяти, он может запоминать вектор Т, направление этого вектора, может меняться и перезаписываться в зависимости от внешних факторов. Степень с которой вектор Т может подвергается изменениям, называется нейропластичность.
Этот вектор в свою очередь оказывает влияние на работу синапсов нейрона. Для каждого синапса определим вектор S начало, которого находится в центре клетки, а конец направлен в центр целевого нейрона, с которым связан синапс. Теперь степень влияния для каждого синапса можно определить следующим образом: чем меньше угол между вектором T и S, тем больше синапс будет, усиливается; чем меньше угол, тем сильнее синапс будет ослабевать и возможно может прекратить передачу возбуждения. Каждый синапс имеет независимое свойство памяти, он помнит значение своей силы. Указанные значения изменяются при каждой активизации нейрона, под влиянием вектора Т, они либо увеличиваются, либо уменьшаются на определённое значение.

Поскольку сердце генерирует самое сильное электромагнитное поле, информация, хранящаяся в его электромагнитном поле, влияет на каждый орган и клетку вашего тела. Неужели именно поэтому сердце является первым органом, который функционирует у плода? Помимо создания самого сильного электромагнитного поля, сердце обладает собственным интеллектом, поэтому некоторые нейрокардиологи называют его сердцем-мозгом или пятым мозгом.

Строение нервной системы

По мнению нейрокардиологов, сердце не только состоит из мышечных клеток, но и нейронов. Они считают, что он обладает интеллектом и играет важную роль в восприятии реальности. Сердце является одним из самых важных органов в человеческом теле, потому что оно является одним из основных средств, связывающих нас друг с другом и с Вселенной. Традиционная наука научила нас, что главная роль сердца - перекачивать кровь ко всем системам организма. Это определение сердца не очень точно. Помимо перекачивания крови, сердце также обладает собственным интеллектом.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ


Входные сигналы (x1, x2,…xn) нейрона представляют собой вещественные числа, которые характеризуют силу синапсов нейронов, оказывающих воздействие на нейрон.
Положительное значение входа означает побудительное воздействие, оказываемое на нейрон, а отрицательное значение – тормозящее воздействие.
Для биологического нейрона не имеет значение, откуда поступил возбуждающий его сигнал, результат его активности будет идентичен. Нейрон будет активизирован, когда сумма воздействий на него будет превышать определённое пороговое значение. Поэтому, все сигналы проходят через сумматор (а), а поскольку нейроны и нервная система работают в реальном времени, следовательно, воздействие входов должно оцениваться в короткий промежуток времени, то есть воздействие синапса имеет временный характер.
Результат сумматора проходит пороговую функцию (б), если сумма превосходит пороговое значение, то это приводит к активности нейрона.
При активации нейрон сигнализирует о своей активности системе, передовая информацию о своём положении в пространстве нервной системы и заряде, изменяемом во времени (в).
Через определённое время, после активации нейрон передает возбуждение по всем имеющимся синапсам, предварительно производя пересчет их силы. Весь период активации нейрон перестает реагировать на внешние раздражители, то есть все воздействия синапсов других нейронов игнорируются. В период активации входит так же период восстановления нейрона.
Происходит корректировка вектора Т (г) с учётом значения точки паттерна Pp и уровнем нейропластичности. Далее происходит переоценка значений всех сил синапсов в нейроне(д).
Обратите внимание, что блоки (г) и (д) выполняются параллельно с блоком (в).

По мнению нейрокардиологов, от 60 до 65 процентов сердечных клеток являются клетками нейронов, а не мышечными клетками. Это открытие помогло им разработать эксперименты, которые доказали, что сердечные работы похожи на мозг и в некотором смысле даже превосходят мозг. Это может быть причиной того, что сердце является первым органом, который будет функционировать после зачатия. В течение примерно 20 дней после зачатия сердце начинает функционировать, но мозг не функционирует до примерно 90 дней. Эта информация говорит нам, что мозг вторичен сердцу.

ЭФФЕКТ ВОЛНЫ

Если внимательно проанализировать предложенную модель, то можно увидеть, что источник возбуждения должен оказывать большее влияние на нейрон, чем другой удалённый, активный участок мозга. Следовательно возникает вопрос: почему же все равно происходит передача в направлении другого активного участка?
Данную проблему я смог определить, только создав компьютерную модель. Решение подсказал график изменения мембранного потенциала при активности нейрона.



Усиленная реполяризация нейрона, как говорилось ранее, имеет важное значение для нервной системы, благодаря ей создается эффект волны, стремление нервного возбуждения распространятся от источника возбуждения.
При работе с моделью я наблюдал два эффекта, ели пренебречь следовым потенциалом или сделать его недостаточно большим, то возбуждение не распространяется от источников, а в большей степени стремится к локализации. Если сделать следовой потенциал сильно большим, то возбуждение стремится «разбежаться» в разные стороны, не только от своего источника, но и от других.

КОГНИТИВНАЯ КАРТА

Используя теорию электромагнитного взаимодействия, можно объяснить многие явления и сложные процессы, протекающие в нервной системе. К примеру, одним из последних открытий, которое широко обсуждается в науках о мозге, является открытие когнитивных карт в гиппокампе.
Гиппокамп – это отдел мозга, которому отвечает за кратковременную память. Эксперименты на крысах выявили, что определённому месту в лабиринте соответствует своя локализованная группа клеток в гиппокампе, причем, не имеет значение, как животное попадает в это место, все равно будет активирован соответствующий этому месту участок нервной ткани. Естественно, животное должно помнить данный лабиринт, не стоит рассчитывать на топологическое соответствие пространства лабиринта и когнитивной карты.


Каждое место в лабиринте представляется в мозге, как совокупность раздражителей различного характера: запахи, цвет стен, возможные примечательные объекты, характерные звуки и т. д. Указанные раздражители отражаются на коре, различных представительствах органов чувств, в виде всплесков активности в определённых комбинациях. Мозг одновременно обрабатывает информацию в нескольких отделах, зачастую информационные каналы разделяются, одна и та же информация поступает в различные участки мозга.


Активация нейронов места в зависимости от положения в лабиринте (активность разных нейронов показана разным цветом).

Гиппокамп расположен в центре мозга, вся кара и её области удалены от него, на одинаковые расстояния. Если определить для каждой уникальной комбинации раздражителей точку масс зарядов поверхностей нейронов, то можно увидеть, что указанные точки будут различны, и будут находиться примерно в центре мозга. К этим точкам будет стремиться и распространятся возбуждение в гиппокампе, формируя устойчивые участки возбуждения. Более того, поочередная смена комбинаций раздражителей, будет приводить к смещению точки паттерна. Участки когнитивной карты будут ассоциативно связываться друг с другом последовательно, что приведет к тому, что животное, помещенное в начало знакомого ей лабиринта, может вспомнить весь последующий путь.

Заключение

У многих возникнет вопрос, где в данной работе предпосылки к элементу разумности или проявления высшей интеллектуальной деятельности?
Важно отметить, что феномен человеческого поведения, есть следствие функционирования биологической структуры. Следовательно, чтобы имитировать разумное поведение, необходимо хорошо понимать принципы и особенности функционирования биологических структур. К сожалению, в науке биологии пока не представлен четкий алгоритм: как работает нейрон, как понимает, куда необходимо отращивать свои дендриты, как настроить свои синапсы, что бы в нервной системе смог сформироваться простой условный рефлекс, на подобие тех, которые демонстрировал и описывал в своих работах академик И.П. Павлов.
С другой стороны в науке об искусственном интеллекте, в восходящем (биологическом) подходе, сложилось парадоксальная ситуация, а именно: когда используемые в исследованиях модели основаны на устаревших представлениях о биологическом нейроне, консерватизм, в основе которого берётся персептрон без переосмысления его основных принципов, без обращения к биологическому первоисточнику, придумывается все более хитроумные алгоритмы и структуры, не имеющих биологических корней.
Конечно, никто не уменьшает достоинств классических нейронных сетей, которые дали множество полезных программных продуктов, но игра с ними не является путем к созданию интеллектуально действующей системы.
Более того, не редки заявления, о том, что нейрон подобен мощной вычислительной машине, приписывают свойство квантовых компьютеров. Из-за этой сверхсложности, нервной системе приписывается невозможность её повторения, ведь это соизмеримо с желанием смоделировать человеческую душу. Однако, в реальности природа идет по пути простоты и элегантности своих решений, перемещение зарядов на мембране клетки может служить, как для передачи нервного возбуждения, так и для трансляции информации о том, где происходит данная передача.
Несмотря на то, что указанная работа демонстрирует, как образуются элементарные условные рефлексы в нервной системе, она приближает к пониманию того, что такое интеллект и разумная деятельность.

Существуют еще множество аспектов работы нервной системы: механизмы торможения, принципы построения эмоций, организация безусловных рефлексов и обучение, без которых невозможно построить качественную модель нервной системы. Есть понимание, на интуитивном уровне, как работает нервная система, принципы которой возможно воплотить в моделях.
Создание первой модели помогли отработать и откорректировать представление об электромагнитном взаимодействии нейронов. Понять, как происходит формирование рефлекторных дуг, как каждый отдельный нейрон понимает, каким образом ему настроить свои синапсы для получения ассоциативных связей.
На данный момент я начал разрабатывать новую версию программы, которая позволит смоделировать многие другие аспекты работы нейрона и нервной системы.

Прошу принять активное участие в обсуждении выдвинутых здесь гипотез и предположений, так как я могу относиться к своим идеям предвзято. Ваше мнение очень важно для меня.

Метки: Добавить метки

спинальные рефлексы - нейроны расположены в спинном мозге

бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

NB! (Nota bene - обрати внимание!)

В рефлекторных актах, осуществляемых при участии нейронов, расположенных в высших отделах центральной нервной системы, всегда участвуют и нейроны, находящиеся в низших отделах - в промежуточном, среднем, продолговатом и спинном мозгу. С другой стороны, при рефлексах, которые осуществляются спинным или продолговатым, средним или промежуточным мозгом, нервные импульсы доходят до высших отделов центральной нервной системы. Таким образом, эта классификация рефлекторных актов до некоторой степени условна.

По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют

моторные, или двигательные рефлексы - исполнительным органом служат мышцы;

секреторные рефлексы - заканчиваются секрецией желез;

сосудодвигателъные рефлексы - проявляющиеся в сужении или расширении кровеносных сосудов.

NB! Эта классификация приемлема к более или менее простым рефлексам, направленным на объединение функций внутри организма. При сложных же рефлексах, в которых участвуют нейроны, находящиеся в высших отделах центральной нервной системы, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результетате чего происходит изменение соотношения организма с внешней средой, изменение поведения организма.Примеры некоторых относительно простых рефлексов, наиболее часто исследуемых в условиях лабораторного эксперимента на животном или в клинике при заболеваниях нервной системы человека.

Как уже отмечалось выше, подобная классификация рефлексов условна: если какой-либо рефлекс может быть получен при сохранности того или иного отдела центральной нервной системы и разрушении вышележащих отделов, то это не означает, что данный рефлекс осуществляется в нормальном организме только при участии этого отдела: в каждом рефлексе участвуют в той или иной мере все отделы центральной нервной системы.

Любой рефлекс в организме осуществляется при помощи рефлекторной дуги.

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)соматической нервной системы, иннервирующие скелетную иускулатуру

вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.Рефлекторная дуга состоит из пяти отделов:

рецепторов, воспринимающих раздражение и отвечающих на него возбуждением. Рецепторами могут быть окончания длинных отростков центростремительных нервов или различной формы микроскопические тельца из эпителиальных клеток, на которых оканчиваются отростки нейронов. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

чувствительного (центростремительного, афферентного) нервного волокна, передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

нервного центра, где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре происходит синаптическое соединение чувствительного и двигательного нейрона.

двигательного (центробежного, эфферентного) нервного волокна, несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами: рецепторным и эффекторным, между которыми имеется один синапс. Такую рефлекторную дугу называют двунейронной и моносинаптической. Моносинаптические рефлекторные дуги встречаются весьма редко. Примером их может служить дуга миотатического рефлекса.

В большинстве случаев рефлекторные дуги включают не два, а большее число нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют многонейронными и полисинаптическими. Примером полисинаптической рефлекторной дуги является рефлекс отдергивания конечности в ответ на болевое раздражение.

Рефлекторная дуга соматической нервной системы на пути от ЦНС к скелетной мышце нигде не прерывается в отличии от рефлекторной дуги вегетативной нервной системы, которая на пути от ЦНС к иннервируемому органу обязательно прерывается с образованием синапса - вегетативного ганглия.

Вегетативные ганглии, в зависимости от локализации, могут быть разделены на три группы:

позвоночные (вертебральные) ганглии - относятся к симпатической нервной системе. Они расположены по обе стороны позвоночника, образуя два пограничных ствола (их еще называют симпатическими цепочками)

предпозвоночные (превертебральные) ганглии располагаются на большем расстояни от позвоночника, вместе с тем они находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральных ганглиев относят ресничный узел, верхний и средний шейный симпатические узлы, солнечное сплетение, верхний и нижний брыжеечные узлы.

внутриорганные ганглии расположены во внутренних органах: в мышечных стенках сердца, бронхов, средней и нижней трети пищевода, желудка, кишечника, желчного пузыря, мочевого пузыря, а также в железах внешней и внутренней секреции. На клетках этих ганглий прерываются парасимпатические волокна.

Такое различие соматической и вегетативной рефлекторной дуги обусловлено анатомическим строением нервных волокон, составляющих нейронную цепь, и скоростью проведения по ним нервного импульса.

Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.

Схема реализации рефлекса

В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.

В двухнейронной рефлекторной дуге (первый нейрон - клетка спинно-мозгового ганглия, второй нейрон - двигательный нейрон [мотонейрон] переднего рога спинного мозга) дендрит клетки спинно-мозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительных волокон нервных стволов. Заканчивается дендрит особым приспособлением для восприятия раздражения - рецептором.

Возбуждение от рецептора по нервному волокну центростремительно (центрипетально) передается в спинно-мозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка; это волокно доходит до мотонейрона переднего рога и с помощью синапса, в котором передача сигнала происходит при помощи химического вещества - медиатора, устанавливает контакт с телом мотонейрона или с одним из ее дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно (центрифугально) сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.

Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.

Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь ("обратная афферентация" по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.

Согласно обратной афферентации, после получения исполнительным органом эфферентного импульса и выполнения рабочего эффекта, исполнительный орган сигнализирует центральной нервной системе о выполнении приказа на периферии.

Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму "обратной афферентации", который имеет характер замкнутого круга.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи ("обратной афферентации") дает новое представление о замкнутой кольцевой цепи рефлексов, о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг - таково новейшее представление о строении и функции нервной системы.

Ответ на 4 и 5 вопрос.

Нервный центр - совокупность структур центральной нервной системы, координированная деятельность которых обес­печивает регуляцию отдельных функций организма или опреде­ленный рефлекторный акт. Представление о структурно-функци­ональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотенциальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамической локализации функций, основанное на признании существо­вания четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных си­стем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структу­рах. Например, дыхательный центр представлен нервными клет­ками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.

Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.

1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры,

процесс возбуждения распро­страняется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).

2. Иррадиация возбуждения. Особенности структурной органи­зации центральных нейронов, огромное

число межнейронных со­единений в нервных центрах существенно модифицируют (изменя­ют) направление распространения процесса возбуждения в зависи­мости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражи­теля приводит к расширению области вовлекаемых в процесс воз­буждения центральных нейронов - иррадиации возбуждения.

3. Суммация возбуждения. В работе нервных центров значи­тельное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой яв­ляется постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

4. Наличие синаптической задержки. Время рефлекторной ре­акции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относи­тельно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка при­мерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах

имеются десятки последовательных синаптических контактов, ста­новится понятной длительность большинства рефлекторных реак­ций - десятки миллисекунд.

Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомле­нием. Этот процесс связан с деятельностью синапсов - в последних наступает истощение запасов медиатора, уменьшаются энергетиче­ские ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие специальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.

7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлектор­ных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.

8. Конвергенция. Нервные центры высших отделов мозга яв­ляются мощными коллекторами, собирающими разнородную аф­ферентную информацию. Количественное соотношение перифери­ческих рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных аффе­рентных входов предопределяет важные интегративные, перераба­тывающие информацию функции центральных нейронов, т. е. вы­сокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги опре­деляет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.

9. Интеграция в нервных центрах. Важные интегративные фун­кции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функцио­нальных объединений отдельных нервных центров в целях осу­ществления сложных координированных приспособительных цело­стных реакций организма (сложные адаптивные поведенческие акты).

10. Свойство доминанты. Доминантным называется временно господствующий в нервных центрах очаг (или доминантный центр) повышенной возбудимости в центральной нервной системе. По А.А.Ухтомскому, доминантный нервный очаг характеризуется та­кими свойствами, как повышенная возбудимость, стойкость и инер­тность возбуждения, способность к суммированию возбуждения.

В доминантном очаге устанавливается определенный уровень ста­ционарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данныхусловий ритм работы, когда этот очаг становится наиболее чувст­вительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги воз­буждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активиру­ющего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.

11. Цефализация нервной системы. Основная тенденция в эво­люционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «ста­рых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных ре­акций.

6. Торможение – местный нервный процесс, приводящий к угнетению или устранению возбуждения. В отличие от возбуждения не распространяется по нервным структурам, как ПД

Торможение в ЦНС выполняет две основные функции:

Во-первых, оно координирует функции, т.е. оно направляет возбуждение по определенным путям к определенным нервным центрам, при этом включая те пути и нейроны, активность которых в данный момент не нужна для получения конкретного приспособительного результата. (Пример важности этой функции процесса торможения для функционирования организма можно наблюдать в эксперименте с введением животному стрихнина). Стрихнин блокирует тормозные синапсы в ЦНС (в основном, глицинэргические) и, тем самым, устраняет основу для формирования процесса торможения. В этих условиях раздражение животного вызывает некоординированную реакцию, в основе которой лежит диффузная (генерализованная) иррадиация возбуждения.

Во-вторых, торможение выполняет охранительную или защитную функцию, предохраняя нервные клетки от перевозбуждения и истощения при действии сверхсильных и длительных раздражителей.

В ходе эволюции одновременно с процессом возбуждения формировались ограничивающие и прерывающие его механизмы торможения.

Классификация центрального торможения

По различным признакам:

По электрическому состоянию мембраны –деполяризационное и гиперполяризационное;

По отношению к синапсу –пресинаптическое и постсинаптическое;

По нейрональной организации –поступательное, латеральное (боковое), возвратное и реципрокное.

Постсинаптическое торможение:

Развивается в условиях, когда медиатор, выделяемый нервным окончанием, изменяет свойства постсинаптической мембраны таким образом, что способность нервной клетки генерировать процессы возбуждения подавляется.

Постсинаптическое торможение может быть деполяризационным, если в его основе лежит процесс длительной деполяризации, и гиперполяризационным, если -гиперполяризации.

Поступательное торможение

обусловлено включением тормозных нейронов на пути следования возбуждения

Торможение возвратное (син. антидромное) - процесс регуляции нервными клетками интенсивности поступающих к ним сигналов по способу обратной связи. Он заключается в том, что коллатерали аксона нервной клетки устанавливают синаптические контакты со специальными вставочными нейронами, которые воздействуют на первый нейрон тормозным синапсом (клетка Реншоу по отношению к мотонейрону спинного мозга).

Это механизм, автоматически охраняющий нервные клетки от чрезмерного возбуждения.

Тормозным медиатором у клетки Реншоу является в спинном мозге глицин, ГАМК в коре БП.

Латеральное (боковое) торможение

Вставочные клетки формируют тормозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения. В таких случаях возбуждение направляется только по строго определенному пути.

Именно латеральное торможение обеспечивает, в основном, системную (направленную) иррадиацию возбуждения в ЦНС.

Реципрокное торможение

Примером реципрокного торможения является торможение центров мышц-антагонистов.

Суть этого вида торможения заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны. Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей.

7. ПРИНЦИПЫ КООРДИНАЦИИ РЕФЛЕКТОРНОЙ ДЕЯТЕЛЬНОСТИ

Иррадиация и концентрация возбуждения и торможения, их взаимная индукция.

Возбуждение и торможение движутся в пространстве ЦНС и во времени

Нервные процессы широко распространяются в нервной системе

Распространение иррадиированной волны возбуждения ограничивается торможением

Процесс взаимного ограничения возбуждения и торможения закон концентрирования возбуждения и торможения.

Иррадиация и концентрация нервных процессов усложняется индукцией –наведением в нервных центрах.

1. РЕЦИПРОКНОСТИ;

2. ОБЩЕГО КОНЕЧНОГО ПУТИ;

3. ДОМИНАНТЫ;

4. СУБОРДИНАЦИИ;

5. ОБРАТНОЙ АФФЕРЕНТАЦИИ.

Процессы возбуждения и торможения в ЦНС не остаются только в тех центрах, где они вызваны, а распространяются (иррадиируют) на другие нервные центры, а также вызывают (индуцируют) друг друга в сопряженно работающих центрах.

Возбуждение и торможение движутся в пространстве ЦНС и во времени. Законы движения возбуждения и торможения определяют координацию т.е. согласованное течение всей сложной рефлекторной деятельности организма.

В норме распространение иррадиированной волны возбуждения ограничивается торможением, которое и определяет течение возбуждения в пространственно определенных участках нервной системы.

Этот процесс взаимного ограничения возбуждения и торможения был назван законом концентрирования возбуждения и торможения.

Иррадиация и концентрация нервных процессов усложняется индукцией → наведением в нервных центрах, одновременно работающих с возбужденным или заторможенным в данный момент, противоположного процесса.

РЕЦИПРОКНАЯ ИННЕРВАЦИЯ

Для центров безусловно-рефлекторной деятельности взаимная индукция наиболее рельефно выступает в центрах сопряженно работающих сгибателей и разгибателей конечностей.

Установлен закон т.н. реципрокной (соотносительной) иннервации мышц-антагонистов → мышцы антагонисты не противодействуют друг другу в работе, а содействуют - в то время, когда происходит сокращение сгибателей, соответствующие им разгибатели расслабляются.

Данный эффект обусловлен тем, что при возбуждении центров сгибателей в центрах разгибателей одноименной стороны индуцируется процесс торможения.

ПРИНЦИП ОБЩЕГО ПОЛЯ

Если иметь в виду только чувствующие нейроны, несущие импульсы к спинному мозгу, то их количество примерно в 5 раз превышает число мотонейронов.

Если же учесть количество вставочных нейронов, которые по существу тоже относятся в воспринимающим раздражение нейронам НС, то количество воспринимающих и анализирующих раздражение внешней среды нервных клеток колоссально возрастает по сравнению с числом нейронов-исполнителей - мотонейронов, сосудодвигательных, секреторных, трофических и т.д..

ЦНС можно представить в качестве "воронки", с широким входным отверстием, куда поступают раздражения с различных рецепторов, и узким выходным отверстием - узким пучком эффекторных нейронов, через которые возбуждение покидает НС.

В эту воронку одновременно вступают импульсы, возникающие при раздражении многих рецепторов. Все они "претендуют" на то, чтобы вызвать возбуждение одной и той же группы мотонейронов, использовать их для осуществления рефлекторного акта.

ПРИНЦИП ОБЩЕГО КОНЕЧНОГО ПУТИ

Актуальным становится самый сильный раздражитель .

Принцип общего поля обеспечивает использование одних и тех же исполнительных механизмов - мотонейронов с их рабочей периферией - в разнообразных направлениях, для разных целей.

Например , передние конечности животных могут быть использованы и для защитных реакций, и для почесывания, плавания. Человек еще использует верхние конечности для письма, жестикуляции, рисования, игры на музыкальных инструментах и т.д.

ПРИНЦИП ОБРАТНОЙ СВЯЗИ

В осуществлении рефлекторных реакций и их координации огромное значение принадлежит обратной связи, которая осуществляется в результате раздражения проприорецепторов, осморецепторов и др. Импульсы, текущие от них в центры, сигнализируют о степени выполнения действия, могут усилить или затормозить осуществляемый рефлекс.

Положительные обратные связи имеются в тех случаях, когда импульсы с периферии, возникающие в результате какой-либо рефлекторной реакции, ее усиливают.

Отрицательные → когда эти импульсы угнетают рефлекторную реакцию.

Чаще всего отрицательные и положительные обратные связи сосуществуют .

Например, вторичные афферентные импульсы, возникающие при осуществлении сокращения скелетной мускулатуры, вызывают или усиливают возбуждение одних центров, и тормозят другие.

8. МЕТОДЫ ИССЛЕДОВАНИЯ ЦНС

Существуют следующие методы исследования функций ЦНС:
1. Метод перерезок ствола мозга на различных уровнях. Например, между продолговатым и спинным мозгом.
2. Метод экстирпации (удаления) или разрушения участков мозга.
3.Метод раздражения различных отделов и центров мозга.
4. Анатомо-клинический метод. Клинические наблюдения за изменениями функций ЦНС при поражении ее каких-либо отделов с последующим патологоанатомическим исследованием.
5. Электрофизиологические методы:
а. Электроэнцефалография - регистрация биопотенциалов мозга с поверхности кожи черепа. Методика разработана и внедрена в клинику Г.Бергером.
б. регистрация биопотенциалов нервных различных центров, используется вместе со стереотаксической техникой, при которой электроды с помощью микроманипуляторов вводят в строго определенное ядро в метод вызванных потенциалов, регистрация электрической активности участков мозга при электрическом раздражении периферических рецепторов или других участков;
6. метод внутримозгового введения веществ с помощью микроинофореза.
7. хронорефлексометрия - определение времени рефлексов.

9. СПИННОЙ МОЗГ

Это наиболее простой, примитивный по строению и физиологическим функциям отдел ЦНС.

Спинной мозг представляет собой своеобразный симметричный орган, построенный из однозначных в структурном отношении сегментов, состоящих из серого и белого вещества и связанных с ними двух задних и двух передних корешков.

Задние корешки - состоят из чувствительных проводников, передние - из двигательных (закон Белла-Мажанди).

В спинном мозгу находятся клеточные тела мотонейронов, иннервирующих все скелетные мышцы (за исключением лица) и тела нейронов, направляющих свои волокна к ганглиям вегетативной нервной системы.

ОСНОВНЫЕ РЕФЛЕКСЫ СПИННОГО МОЗГА

Рефлексы растяжения - в основном разгибательные - рефлексы позы, толчковые (прыжок, бег) рефлексы

Сгибательные рывковые рефлексы

Ритмические рефлексы (чесательный, шагательный)

Позиционные рефлексы (шейные тонические рефлексы наклонения и положения)

Вегетативные рефлексы

10. Продолговатый мозг (ПМ) сохраняет в чертах своего строения отдельные признаки сегментарных отношений, типичных для спинного мозга.

Однако правильность в распределении серого и белого вещества здесь значительно нарушена.

В результате структурных и функциональных перестроек, сопровождающих процесс филогенеза, скопления клеточных тел привели к образованию т.н. ядер продолговатого мозга, являющихся центрами рефлекторных функций.

Рефлекторная функция

В продолговатом мозге находятся центры афферентной иннервации различных мимических мышц лица, слизистой оболочки ротовой полости, глаза, лабиринта внутреннего уха и многих внутренних органов - органов дыхания, пищеварения, кровообращения.

Основная биологическая роль рефлекторной деятельности ПМ заключается в обеспечении через регуляцию функций иннервируемых им органов постоянства внутренней среды организма (гомеостаза).

Осуществляется рефлекторная регуляция жизненно важных функций → акта дыхания, защитных рефлексов, связанных с деятельностью дыхательной системы (чихание, кашель), регуляция сердечно сосудистой деятельности, пищеварительного аппарата, рефлексов сосания, жевания, глотания, рвоты, моргания, слезотечения, потоотделения и т.п.

ПМ за счет связи с проприорецепторами выполняет роль регулятора тонуса скелетной мускулатуры.

Обеспечивает тоническое напряжение прежде всего разгибателей , предназначенных для преодоления силы тяжести (позо-тонические рефлексы).

Проводниковая функция

Осуществляется эфферентная нисходящая связь между двигательными зонами коры больших полушарий и двигательными центрами спинного мозга (пирамидный тракт).

Через продолговатый мозг осуществляется и афферентная связь между спинным мозгом и выше лежащими отделами.

ПМ как относительно высший отдел ЦНС регулирует работу более примитивного спинного мозга. Эта координационная функция нацелена на объединение всех сегментов спинного мозга в единое целое, на обеспечение условий для целостной деятельности спинного мозга.

Повреждение продолговатого мозга связано с нарушением или полным выпадением функций, регулируемых этим отделом ЦНС.

Полное разрушение продолговатого мозга ведет к гибели животных, для которых относительное постоянство внутренней среды является обязательным условием существования.

У человека заболевания продолговатого мозга чрезвычайно тяжело сказываются на всех видах деятельности организма.

Непосредственной причиной неизбежной смерти является нарушение деятельности дыхательной системы.

11.Физиология среднего мозга.

В строении среднего мозга (СМ) окончательно утрачиваются сегментарные признаки.

Клеточные элементы образуют здесь сложные скопления в виде ядерных образований , относящихся как непосредственно к среднему мозгу, так и входящих в состав ретикулярной формации мозгового ствола.

Ядра сенсорного, афферентного значения располагаются в дорзальной части СМ (четверохолмие), ядра эфферентного значения - в вентральной его части (красное ядро, черная субстанция и др.).

Через средний мозг в составе т.н. ножек мозга и мозжечка проходят многочисленные проводящие пути, связывающие в восходящем и нисходящем направлениях между собой большой мозг и мозжечок, продолговатый и спинной мозг.

обеспечивает расширение и усовершенствование рефлекторной деятельности продолговатого мозга;

Координация функций организма сигналами со зрительных и слуховых рецепторов;

Окончательно утрачиваются сегментарные признаки;

Клеточные элементы сложные скопления в виде ядерных образований (средний мозг и ретикулярная формация мозгового ствола).

Основные ядра среднего мозга

Ядра черепномозговых нервов:

III пара -глазодвигательного нерва

IV пара -блокового нерва ---

Ядро Даркшевича - продольный пучок среднего мозга, связывающий ядра глазодвигательного, блокового и отводящего нерва в единую систему

Непарное вегетативное ядро Якубовича-Эдингера - через цилиарный ганглий к мышцам радужки и ресничного тела

Ядра тектальной области:

верхнее или переднее двухолмие -зрительные рефлексы;

нижнее или заднее двухолмие - слуховые рефлексы – четверохолмие

Черная субстанция

Красные ядра

12. Физиология мозжечка.

Мозжечок входит в состав заднего мозга.

У человека этот орган достигает своего наивысшего развития и занимает большую часть задней черепной ямки.

Мозжечок связан с другими отделами мозга с помощью афферентных и эфферентных путей.

Деятельность мозжечка имеет ближайшее отношение к осуществлению произвольных движений.

Однако повреждение мозжечка не влечет за собой двигательных и сенсорных параличей!

ОСНОВНЫЕ ФУНКЦИИ МОЗЖЕЧКА

РЕГУЛЯЦИЯ ПОЗЫ И МЫШЕЧНОГО ТОНУСА

КОРРЕКЦИЯ МЕДЛЕННЫХ ЦЕЛЕНАПРАВЛЕННЫХ ДВИЖЕНИЙ И ИХ КООРДИНАЦИЯ С РЕФЛЕКСАМИ ПОДДЕРЖАНИЯ ПОЗЫ

ПРАВИЛЬНОЕ ВЫПОЛНЕНИЕ БЫСТРЫХ ЦЕЛЕНАПРАВЛЕННЫХ ДВИЖЕНИЙ ПО КОМАНДАМ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ В СТРУКТУРЕ ОБЩЕЙ ПРОГРАММЫ ДВИЖЕНИЙ


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции