18.07.2019

Патогенез гипоксии патофизиология. Виды гипоксии - основы патологической физиологии. Стадия защитно-компенсаторных реакций


Министерство Здравоохранения Республики Беларусь

Белорусский государственный медицинский университет

КАФЕДРА ПАТОЛОГИЧЕСКОЙ ФИЗИОЛОГИИ

Е.В. Леонова, Ф.И. Висмонт

ГИПОКСИЯ

(патофизиологические аспекты)


УДК 612.273.2(075.8)

Рецензент: доктор мед. наук, профессор М.К. Недзведзь

Утверждено Научно-методическим советом университета

Леонова Е.В.

Гипоксия (патофизиологические аспекты): Метод. рекомендации

/Е.В. Леонова, Ф.И. Висмонт – Мн.: БГМУ, 2002. – 22 с.

Издание содержит краткое изложение патофизиологии гипоксических состояний. Дана общая характеристика гипоксии, как типового патологического процесса; обсуждаются вопросы этиологии и патогенеза различных видов гипоксий, компенсаторно-приспособительные реакции и нарушения функций, механизмы гипоксического некробиоза, адаптация к гипоксии и дизадаптация.

УДК 612.273.2(075.8)

ББК 28.707.3 &73

© Белорусский государственный

медицинский университет, 2002

1. Мотивационная характеристика темы

Общее время занятий: 2 академических часа для студентов стоматологического факультета, 3 – для студентов лечебно-профилактического, медико-профилактического и педиатрического факультетов.

Учебно-методическое пособие разработано с целью оптимизации учебного процесса и предлагается для подготовки студентов к практическому занятию по теме «Гипоксия». Данная тема рассматривается в разделе «Типовые патологические процессы». Приведенные сведения отражают связь со следующими темами предмета: «Патофизиология системы внешнего дыхания», «Патофизиология сердечно-сосудистой системы», «Патофизиология системы крови», «Патофизиология обмена веществ», «Нарушения кислотно-основного состояния».

Гипоксия является ключевым звеном патогенеза разнообразных заболеваний и патологических состояний. При любом патологическом процессе имеют место явления гипоксии, она играет важную роль в развитии повреждений при многих болезнях и сопровождает острую гибель организма независимо от причин ее вызывающих. Однако, в учебной литературе раздел «Гипоксия», по которому накоплен обширный материал, изложен очень широко, с излишними подробностями, что затрудняет его восприятие иностранными учащимися, которые в силу языкового барьера испытывают трудности при конспектировании лекций. Вышесказанное и явилось поводом для написания настоящего пособия. В пособии дается определение и общая характеристика гипоксии как типового патологического процесса, в краткой форме обсуждаются вопросы этиологии и патогенеза различных ее видов, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза; дается представление об адаптации к гипоксии и дизадаптации.

Цель занятия - изучить этиологию, патогенез различных видов гипоксии, компенсаторно-приспособительные реакции, нарушения функций и обмена веществ, механизмы гипоксического некробиоза, адаптации к гипоксии и дизадаптации.

Задачи занятия

Студент должен:

Определение понятия гипоксии, ее виды;

Патогенетическую характеристику различных видов гипоксии;

Компенсаторно-приспособительные реакции при гипоксии, их виды, механизмы;

Нарушения основных жизненных функций и обмена веществ при гипоксических состояниях;

Механизмы повреждения и гибели клеток при гипоксии (механизмы гипоксического некробиоза);

Основные проявления дизбаризма (декомпрессии);

Механизмы адаптации к гипоксии и дизадаптации.

Дать обоснованное заключение о наличии гипоксического состояния и характере гипоксии на основании анамнеза, клинической картины, газового состава крови и показателей кислотно-основного состояния.

3. Быть ознакомленным с клиническими проявлениями гипоксических состояний.

2. Контрольные вопросы по смежным дисциплинам

1. Кислородный гомеостаз, его сущность.

2. Система обеспечения организма кислородом, ее компоненты.

3. Структурно-функциональная характеристика дыхательного центра.

4. Кислородтранспортная система крови.

5. Газообмен в легких.

6. Кислотно-основное состояние организма, механизмы его регуляции.

3. Контрольные вопросы по теме занятия

1. Определение гипоксии как типового патологического процесса.

2. Классификация гипоксий по а) этиологии и патогенезу, б) распространенности процесса, в) скорости развития и длительности, г) степени тяжести.

3. Патогенетическая характеристика различных видов гипоксий.

4. Компенсаторно-приспособительные реакции при гипоксиях, их виды, механизмы возникновения.

5. Нарушения функций и обмена веществ при гипоксиях.

6. Механизмы гипоксического некробиоза.

7. Дизбаризм, его основные проявления.

8. Адаптация к гипоксии и дизадаптация, механизмы развития.

4. Гипоксия

4.1. Определение понятия. Виды гипоксий.

Гипоксия (кислородное голодание) – типовой патологический процесс, возникающий в результате недостаточности биологического окисления и обусловленной ею энергетической необеспеченности жизненных процессов. В зависимости от причин и механизма развития различают гипоксии:

· экзогенные , возникающие при воздействии на систему обеспечения кислородом изменениями его содержания во вдыхаемом воздухе и (или) изменениями общего барометрического давления – гипоксическую (гипо- и-нормобарическую), гипероксическую (гипер- и-нормобарическую);

· дыхательную (респираторную);

· циркуляторную (ишемическую и застойную);

· гемическую (анемическую и вследствие инактивации гемоглобина);

· тканевую (при нарушении способности тканей поглощать кислород или при разобщении процессов биологического окисления и фосфорилирования);

· субстратную (при дефиците субстратов);

· перегрузочную («гипоксия нагрузки»);

· смешанную .

Выделяют также гипоксии: а) по течению, молниеносную, длящуюся несколько десятков секунд; острую – десятки минут; подострую – часы, десятки часов, хроническую – недели, месяцы, годы; б) по распространенности – общую и регионарную; в) по степени тяжести – легкую, умеренную, тяжелую, критическую (смертельную) формы.

Проявления и исход гипоксий зависят от природы этиологического фактора, индивидуальной реактивности организма, степени тяжести, скорости развития, продолжительности процесса.

4.2. Этиология и патогенез гипоксий

4.2.1. Гипоксическая гипоксия

а) Гипобарическая. Возникает при понижении парциального давления кислорода во вдыхаемом воздухе, в условиях разреженной атмосферы. Имеет место при подъеме в горы (горная болезнь) или при полетах на летательных аппаратах (высотная болезнь, болезнь летчиков). Основными факторами, вызывающими патологические сдвиги являются: 1) понижение парциального давления кислорода во вдыхаемом воздухе (гипоксия); 2) понижение атмосферного давления (декомпрессия или дизбаризм).

б) Нормобарическая. Развивается в тех случаях, когда общее барометрическое давление нормально, но парциальное давление кислорода во вдыхаемом воздухе понижено. Встречается, главным образом, в производственных условиях (работа в шахтах, неполадки в системе кислородного обеспечения кабины летательного аппарата, в подводных лодках, а также имеет место при нахождении в помещениях малого объема при большой скученности людей.)

При гипоксической гипоксии снижается парциальное давление кислорода во вдыхаемом и альвеолярном воздухе; напряжение и содержание кислорода в артериальной крови; возникает гипокапния, сменяющаяся гиперкапнией.

4.2.2. Гипероксическая гипоксия

а) Гипербарическая. Возникает в условиях избытка кислорода («голод среди изобилия»). «Лишний» кислород не потребляется в энергетических и пластических целях; угнетает процессы биологического окисления; подавляет тканевое дыхание является источником свободных радикалов, стимулирующих перекисное окисление липидов, вызывает накопление токсических продуктов, а также вызывает повреждение легочного эпителия, спадение альвеол, снижение потребления кислорода, и в конечном счете нарушается обмен веществ, возникают судороги, коматозное состояние (осложнения при гипербарической оксигенации).

б) Нормобарическая. Развивается как осложнение при кислородной терапии, когда длительно используются высокие концентрации кислорода, особенно у пожилых людей, у которых с возрастом падает активность антиоксидантной системы.

При гипероксической гипоксии в результате увеличения парциального давления кислорода во вдыхаемом воздухе увеличивается его воздушно-венозный градиент, но снижается скорость транспорта кислорода артериальной кровью и скорость потребления кислорода тканями, накапливаются недоокисленные продукты, возникает ацидоз.

4.2.3. Дыхательная (респираторная) гипоксия

Развивается в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушением вентиляционно-перфузионных отношений, затруднением диффузии кислорода (болезни легких, трахеи, бронхов, нарушение функции дыхательного центра; пневмо-, гидро-, гемоторакс, воспаление, эмфизема, саркоидоз, асбестоз легких; механические препятствия для поступления воздуха; локальное запустевание сосудов легких, врожденные пороки сердца). При респираторной гипоксии в результате нарушения газообмена в легких снижается напряжение кислорода в артериальной крови, возникает артериальная гипоксемия, в большинстве случаев в связи с ухудшением альвеолярной вентиляции, сочетающаяся с гиперкапнией.

4.2.4. Циркуляторная (сердечно-сосудистая) гипоксия

Возникает при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Важнейший показатель и патогенетическая основа ее развития – уменьшение минутного объема крови. Причины: расстройства сердечной деятельности (инфаркт, кардиосклероз, перегрузка сердца, нарушения электролитного баланса, нейрогуморальной регуляции функции сердца, тампонада сердца, облитерация полости перикарда); гиповолемия (массивная кровопотеря, уменьшение притока венозной крови к сердцу и др.). При циркуляторной гипоксии снижается скорость транспорта кислорода артериальной, капиллярной кровью при нормальном или сниженном содержании в артериальной крови кислорода, снижение этих показателей в венозной крови, высокая артериовенозная разница по кислороду.

4.2.5. Кровяная (гемическая) гипоксия

Развивается при уменьшении кислородной емкости крови. Причины: анемия, гидремия; нарушение способности гемоглобина связывать, транспортировать и отдавать тканям кислород при качественных изменениях гемоглобина (образование карбоксигемоглобина, метгемоглобинообразование, генетически обусловленные аномалии Нв). При гемической гипоксии снижается содержание кислорода в артериальной и венозной крови; уменьшается артерио-венозная разница по кислороду.

4.2.6. Тканевая гипоксия

Различают первичную и вторичную тканевую гипоксию. К первичной тканевой (целлюлярной) гипоксии относят состояния, при которых имеет место первичное поражение аппарата клеточного дыхания. Основные патогенетические факторы первично-тканевой гипоксии: а) снижение активности дыхательных ферментов (цитохромоксидазы при отравлении цианидами), дегидрогеназ (действие больших доз алкоголя, уретана, эфира), снижение синтеза дыхательных ферментов (недостаток рибофлавина, никотиновой кислоты), б) активация перекисного окисления липидов, ведущая к дестабилизации, декомпозиции мембран митохондрий и лизосом (ионизирующее излучение, дефицит естественных антиоксидантов – рутина, аскорбиновой кислоты, глютатиона, каталазы и др.), в) разобщение процессов биологического окисления и фосфорилирования, при котором потребление кислорода тканям может возрастать, но значительная часть энергии рассеивается в виде тепла и несмотря на высокую интенсивность функционирования дыхательной цепи, ресинтез макроэргических соединений не покрывает потребностей тканей, возникает относительная недостаточность биологического окисления. Ткани находятся в состоянии гипоксии. При тканевой гипоксии парциальное напряжение и содержание кислорода в артериальной крови могут до известного предела оставаться нормальными, а в венозной крови значительно повышаются; уменьшается артерио-венозная разница по кислороду. Вторичная тканевая гипоксия может развиться при всех других видах гипоксии.

4.2.7. Субстратная гипоксия

Развивается в тех случаях, когда при адекватной доставке кислорода к органам и тканям, нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению всех звеньев биологического окисления. В большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы, например, при расстройствах углеводного обмена (сахарный диабет и др.), а также при дефиците других субстратов (жирных кислот в миокарде), тяжелом голодании.

4.2.8. Перегрузочная гипоксия («гипоксия нагрузки»)

Возникает при напряженной деятельности органа или ткани, когда функциональные резервы систем транспорта и утилизации кислорода при отсутствии в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности в кислороде (чрезмерная мышечная работа, перегрузка сердца). Для перегрузочной гипоксии характерно образование «кислородного долга» при увеличении скорости доставки и потребления кислорода, а также скорости образования и выведения углекислоты, венозная гипоксемия, гиперкапния.

4.2.9. Смешанная гипоксия

Гипоксия любого типа, достигнув определенной степени, неизбежно вызывает нарушения функции различных органов и систем, участвующих в обеспечении доставки кислорода и его утилизации. Сочетание различных типов гипоксии наблюдается, в частности, при шоке, отравлении боевыми отравляющими веществами, заболеваниях сердца, коматозных состояниях и др.

5. Компенсаторно-приспособительные реакции

Первые изменения в организме при гипоксии связаны с включением реакций, направленных на сохранение гомеостаза (фаза компенсации). Если приспособительные реакции оказываются недостаточными, в организме развиваются структурно-функциональные нарушения (фаза декомпенсации). Различают реакции, направленные на приспособление к кратковременной острой гипоксии (срочные) и реакции, обеспечивающие устойчивое приспособление к менее выраженной, но длительно существующей или многократно повторяющейся гипоксии (реакции долговременного приспособления). Срочные реакции возникают рефлекторно вследствие раздражения рецепторов сосудистой системы и ретикулярной формации ствола мозга изменившимся газовым составом крови. Происходит увеличение альвеолярной вентиляции, ее минутного объема, за счет углубления дыхания, учащения дыхательных экскурсий, мобилизации резервных альвеол (компенсаторная одышка); учащаются сердечные сокращения, увеличиваются масса циркулирующей крови (за счет выброса крови из кровяных депо), венозный приток, ударный и минутный объем сердца, скорость кровотока, кровоснабжение мозга, сердца и других жизненно важных органов и уменьшается кровоснабжение мышц, кожи и др. (централизация кровообращения); повышается кислородная емкость крови за счет усиленного вымывания эритроцитов из костного мозга, а затем и активация эритропоэза, повышаются кислородсвязывающие свойства гемоглобина. Оксигемоглобин приобретает способность отдавать тканям большее количество кислорода даже при умеренном снижении рО 2 в тканевой жидкости, чему способствует развивающийся в тканях ацидоз (при котором оксигемоглобин легче отдает кислород); ограничивается активность органов и тканей, непосредственно не участвующих в обеспечении транспорта кислорода; повышается сопряженность процессов биологического окисления и фосфорилирования, усиливается анаэробный синтез АТФ за счет активации гликолиза; в различных тканях увеличивается продукция оксида азота, что ведет к расширению прекапиллярных сосудов, снижению адгезии и агрегации тромбоцитов, активации синтеза стресс-белков, защищающих клетку от повреждения. Важной приспособительной реакцией при гипоксии является активация гипоталамо-гипофизарно-надпочечниковой системы (стресс – синдром), гормоны которой (глюкокортикоиды), стабилизируя мембраны лизосом, снижают тем самым повреждающее действие гипоксического фактора, и препятствуют развитию гипоксического некробиоза, повышая устойчивость тканей к недостатку кислорода.

Компенсаторные реакции при гипероксической гипоксии направлены на предупреждение возрастания напряжения кислорода в артериальной крови и в тканях ─ ослабление легочной вентиляции и центрального кровообращения, снижение минутного объема дыхания и кровообращения, частоты сердечных сокращений, ударного объема сердца, уменьшение объема циркулирующей крови, ее депонирование в паренхиматозных органах; понижение артериального давления; сужение мелких артерий и артериол мозга, сетчатки глаза и почек, наиболее чувствительных как к недостатку, так и к избытку кислорода. Эти реакции в целом обеспечивают соответствие потребности тканей в кислороде.

6. Нарушения основных физиологических функций и обмена веществ

Наиболее чувствительна к кислородному голоданию нервная ткань. При полном прекращении снабжения кислородом признаки нарушения в коре больших полушарий обнаруживаются уже через 2,5-3 мин. При острой гипоксии первые расстройства (особенно четко проявляющиеся при гипоксической ее форме) наблюдаются со стороны высшей нервной деятельности (эйфория, эмоциональные расстройства, изменения почерка и пропуски букв, притупление и потеря самокритики, которые затем сменяются депрессией, угрюмостью, сварливостью, драчливостью). С нарастанием острой гипоксии вслед за активацией дыхания возникают различные нарушения ритма, неравномерность амплитуды дыхательных движений, редкие, короткие дыхательные экскурсии постепенно ослабевающие до полного прекращения дыхания. Возникает тахикардия, усиливающаяся параллельно ослаблению деятельности сердца, затем – нитевидный пульс, фибрилляция предсердий и желудочков. Систолическое давление постепенно понижается. Нарушаются пищеварение и функция почек. Снижается температура тела.

Универсальный, хотя и неспецифический признак гипоксических состояний, гипоксического повреждения клеток и тканей – повышение пассивной проницаемости биологических мембран, их дезорганизация, что ведет к выходу ферментов в межтканевую жидкость и кровь, вызывая нарушения обмена веществ и вторичную гипоксическую альтерацию тканей.

Изменения в углеводном и энергетическом обмене приводят к дефициту макроэргов, уменьшению содержания АТФ в клетках, усилению гликолиза, снижению содержания гликогена в печени, угнетению процессов его ресинтеза; в результате в организме повышается содержание молочной и др. органических кислот. Развивается метаболический ацидоз. Недостаточность окислительных процессов приводит к нарушению обмена липидов и белков. Снижается концентрация в крови основных аминокислот, возрастает содержание в тканях аммиака, возникает отрицательный азотистый баланс, развивается гиперкетонемия, резко активируются процессы перекисного окисления липидов.

Нарушение обменных процессов приводит к структурно-функциональ-ным изменениям и повреждению клеток с последующим развитием гипоксического и совободно радикального некробиоза, гибели клеток, в первую очередь, нейронов.

6.1. Механизмы гипоксического некробиоза

Некробиоз – процесс отмирания клетки, глубокая, частично необратимая стадия повреждения клетки, непосредственно предшествующая ее смерти. По биохимическим критериям клетка считается погибшей с момента полного прекращения ею производства свободной энергии. Любое воздействие, вызывающее более или менее продолжительное кислородное голодание ведет к гипоксическому повреждению клетки. На начальном этапе этого процесса снижается скорость аэробного окисления и окислительного фосфорилирования в митохондриях. Это приводит к понижению количества АТФ, возрастанию содержания аденозиндифосфата (АДФ), и аденозинмонофосфата (АМФ). Уменьшается коэффициент АТФ/АДФ+АМФ, снижаются функциональные возможности клетки. При низком соотношении АТФ/АДФ+АМФ активируется фермент фосфорфруктокиназа (ФФК), что приводит к усилению реакции анаэробного гликолиза, клетка расходует гликоген, обеспечивая себя энергией за счет бескислородного распада глюкозы; Запасы гликогена в клетке истощаются. Активация анаэробного гликолиза ведет к снижению рН цитоплазмы. Прогрессирующий ацидоз вызывает денатурацию белков и помутнение цитоплазмы. Поскольку ФФК кислотоугнетаемый фермент, то в условиях гипоксии ослабляется гликолиз, формируется дефицит АТФ. При значительном дефиците АТФ процессы клеточного повреждения усугубляются. Наиболее энергоемкий фермент в клетке – калий-натриевая АТФ-аза. При дефиците энергии ограничиваются его возможности, в результате чего утрачивается нормальный калий-натриевый градиент; клетки теряют ионы калия, а вне клеток возникает его избыток – гиперкалиемия. Утрата калий-натриевого градиента означает для клетки уменьшение потенциала покоя, вследствие чего положительный поверхностный заряд, свойственный нормальным клеткам уменьшается, клетки становятся менее возбудимыми, нарушаются межклеточные взаимодействия, что и происходит при глубокой гипоксии. Последствие повреждения калий-натриевого насоса – проникновение избытка натрия в клетки, гипергидратация и набухание их, расширение цистерн эндоплазматического ретикулума. Гипергидратации способствует и накопление осмотически активных продуктов разрушения и усиленного катаболизма полимерных клеточных молекул. В механизме гипоксического некробиоза, особенно на глубоких стадиях, ключевую роль играет увеличение содержания ионизированного внутриклеточного кальция, избыток которого токсичен для клетки. Увеличение внутриклеточной концентрации кальция вначале обусловлено нехваткой энергии для работы кальций-магниевого насоса. При углублении гипоксии кальций попадает в клетку уже через входные кальциевые каналы наружной мембраны, а также массивным потоком из митохондрий, цистерн гладкого эндоплазматического ретикулума и через поврежденные клеточные мембраны. Это приводит к критическому нарастанию его концентрации. Длительный избыток кальция в цитоплазме ведет к активации Са ++ зависимых протеиназ, прогрессирующему цитоплазматическому протеолизу. При необратимом повреждении клетки в митохиндрии поступают значительные количества кальция, что приводит к инактивации их ферментов, денатурации белка, стойкой утрате способности к продукции АТФ даже при восстановлении притока кислорода или реперфузии. Таким образом, центральным звеном клеточной гибели является длительное повышение цитоплазматической концентрации ионизированного кальция. Гибели клеток способствуют и активные кислородсодержащие радикалы, образующиеся в большом количестве липоперекиси и гидроперекиси липидов мембран, а также гиперпродукция оксида азота, оказывающие на этом этапе повреждающее, цитотоксическое действие.

6.2. Дизбаризм

При очень быстром понижении барометрического давления (нарушение герметичности летательных аппаратов, быстрый подъем на высоту) развивается симптомокомплекс декомпрессионной болезни (дизбаризм), включающий следующие компоненты:

а) на высоте 3-4 тысячи метров – расширение газов и относительное увеличение их давления в замкнутых полостях тела – придаточных полостях носа, лобных пазухах, полости среднего уха, плевральной полости, желудочно-кишечном тракте («высотный метеоризм»), что ведет к раздражению рецепторов этих полостей, вызывая резкие боли («высотные боли»);

б) на высоте 9 тыс. м. – дессатурация (снижение растворимости газов), газовая эмболия, ишемия тканей; мышечно-суставные, загрудинные боли; нарушение зрения, кожный зуд, вегето-сосудистые и мозговые расстройства, поражение периферических нервов;

в) на высоте 19 тыс. м. (В=47 мм рт. ст., рО 2 – 10 мм рт. ст.) и более – процесс «кипения» в тканях и жидких средах при температуре тела, высотная тканевая и подкожная эмфизема (появление подкожных вздутий и боль).

7. Адаптация к гипоксии и дизадаптация

При многократно повторяющейся кратковременной или постепенно развивающейся и длительно существующей умеренной гипоксии развивается адаптация – процесс постепенного повышения устойчивости организма к гипоксии, в результате которого организм приобретает способность нормально осуществлять различные формы деятельности (вплоть до высших), в таких условиях недостатка кислорода, которые ранее этого «не позволяли».

При длительной адаптации к гипоксии формируются механизмы долговременного приспособления («системный структурный след»). К ним относятся: активация гипоталамо-гипофизарной системы и коры надпочечников, гипертрофия и гиперплазия нейронов дыхательного центра, гипертрофия и гиперфункция легких; гипертрофия и гиперфункция сердца, эритроцитоз, увеличение количества капилляров в мозге и сердце; повышение способности клеток к поглощению кислорода, связанное с увеличением числа митохондрий, их активной поверхности и химического средства к кислороду; активация антиоксидантной и детоксикационной систем. Эти механизмы позволяют адекватно обеспечивать потребность организма в кислороде, несмотря на его дефицит во внешней среде, трудности в доставке и снабжении тканей кислородом. В их основе лежит активация синтеза нуклеиновых кислот и белка. В случае длительно продолжающейся гипоксии, ее углублении происходит постепенное истощение адаптационных возможностей организма, может развиться их несостоятельность и наступить «срыв» реакции долговременной адаптации (дизадаптация) и даже декомпенсация, сопровождающаяся нарастанием деструктивных изменений в органах и тканях, рядом функциональных нарушений, проявляющаяся синдромом хронической горной болезни.

Литература

Основная:

1. Патологическая физиология. Под ред. А.Д. Адо и В.В. Новицкого, Изд-во Томского ун-та, Томск, 1994, с. 354-361.

2. Патологическая физиология. Под ред. Н.Н. Зайко и Ю.В. Быця. – Киев, «Логос», 1996, с. 343-344.

3. Патофизиология. Курс лекций. Под ред. П.Ф. Литвицкого. – М., Медицина, 1997, с. 197-213.

Дополнительная:

1. Зайчик А.Ш., Чурилов А.П. Основы общей патологии, часть 1, СПб, 1999. – Элби, с. 178-185.

2. Гипоксия. Адаптация, патогенез, клиника. Под общ. ред. Ю.Л.Шевченко. – СПб, ООО «Элби-СПБ», 2000, 384 с.

3. Руководство по общей патологии. Под ред. Н.К. Хитрова, Д.С. Саркисова, М.А. Пальцева. – М. Медицина, 1999. – С. 401-442.

4. Шанин В.Ю. Клиническая патофизиология. Учебник для медицинских вузов. – СПб: «Специальная литература», 1998, с. 29-38.

5. Шанин В.Ю. Типовые патологические процессы. – СПб: Специальная литература, 1996, - с. 10-23.


1. Мотивационная характеристика темы. Цель и задачи занятия.......... 3

2. Контрольные вопросы по смежным дисциплинам.............................. 5

3. Контрольные вопросы по теме занятия............................................... 5

4. Гипоксия

4.1. Определение понятия, виды гипоксий........................................ 6

4.2. Этиология и патогенез гипоксий................................................ 7

5. Компенсаторно-приспособительные реакции..................................... 12

6. Нарушения основных физиологических функций и обмена веществ. 14

6.1. Механизмы гипоксического некробиоза...................................... 16

6.2. Дизбаризм...................................................................................... 18

7. Адаптация к гипоксии и дизадаптация................................................ 19

8. Литература............................................................................................ 20

Одним из обязательных условий жизни организма является непрерывное образование и потребление им энергии. Она расходуется на обеспечение метаболизма, на сохранение и обновление структурных элементов органов и тканей, а также на осуществление их функции. Недостаток энергии в организме приводит к существенным нарушениям обмена веществ, морфологическим изменениям и нарушениям функций, а нередко - к гибели органа и даже организма. В основе дефицита энергии лежит гипоксия.

Гипоксия - типовой патологический процесс, характеризующийся как правило снижением содержания кислорода в клетках и тканях. Развивается в результате недостаточности биологического окисления и является основой нарушений энергетического обеспечения функций и синтетических процессов организма.

Типы гипоксии

В зависимости от причин и особенностей механизмов развития выделяют следующие типы:

  1. Экзогенный:
    • гипобарический;
    • нормобарический.
  2. Респираторный (дыхательный).
  3. Циркуляторный (сердечно-сосудистый).
  4. Гемический (кровяной).
  5. Тканевый (первично-тканевый).
  6. Перегрузочный (гипоксия нагрузки).
  7. Субстратный.
  8. Смешанный.

В зависимости от распространенности в организме гипоксия может быть общей или местной (при ишемии, стазе или венозной гиперемии отдельных органов и тканей).

В зависимости от тяжести течения выделяют легкую, умеренную, тяжелую и критическую гипоксию, чреватую гибелью организма.

В зависимости от скорости возникновения и длительности течения гипоксия может быть:

  • молниеносной - возникает в течение нескольких десятков секунд и нередко завершается смертью;
  • острой - возникает в течение нескольких минут и может длиться несколько суток:
  • хронической - возникает медленно, длится несколько недель, месяцев, лет.

ХАРАКТЕРИСТИКА ОТДЕЛЬНЫХ ТИПОВ ГИПОКСИИ

Экзогенный тип

Причина : уменьшение парциального давления кислорода P(O 2) во вдыхаемом воздухе, что наблюдается при высоком подъеме в горы («горная» болезнь) или при разгерметизации летательных аппаратов («высотная» болезнь), а также при нахождении людей в замкнутых помещениях малого объема, при работах в шахтах, колодцах. в подводных лодках.

Основные патогенные факторы:

  • гипоксемия (снижение содержания кислорода в крови);
  • гипокапния (снижение содержания СO 2), которая развивается в результате увеличения частоты и глубины дыханий и приводит к снижению возбудимости дыхательного и сердечно-сосудистого центров головного мозга, что усугубляет гипоксию.

Респираторный (дыхательный) тип

Причина: недостаточность газообмена в легких при дыхании, что может быть обусловлено снижением альвеолярной вентиляции или затруднением диффузии кислорода в легких и может наблюдаться при эмфиземе легких, пневмое.

Основные патогенные факторы:

  • артериальная гипоксемия. например при пневмое, гипертонии малого круга кровообращения и др.;
  • гиперкапния, т. е. увеличение содержания СО 2 ;
  • гипоксемия и гиперкапния характерны и для асфиксии - удушения (прекращения дыхания).

Циркуляторный (сердечно-сосудистый) тип

Причина: нарушение кровообращения, приводящее к недостаточному кровоснабжению органов и тканей, что наблюдается при массивной кровопотере, обезвоживании организма, нарушениях функции сердца и сосудов, аллергических реакциях, нарушениях электролитного баланса и др.

- гипоксемия венозной крови, так как в связи с ее медленным протеканием в капиллярах происходит интенсивное поглощение кислорода, сочетающееся с увеличением артериовенозной разницы по кислороду.

Гемический (кровяной) тип

Причина: снижение эффективной кислородной емкости крови. Наблюдается при анемиях, нарушении способности гемоглобина связывать, транспортировать и отдавать кислород в тканях (например, при отравлении угарным газом или при гипербарической оксигенации).

Основной патогенетический фактор - снижение объемного содержания кислорода в артериальной крови, а также падение напряжения и содержания кислорода в венозной крови.

Тканевый тип

Причины:

  • нарушение способности клеток поглощать кислород;
  • уменьшение эффективности биологического окисления в результате разобщения окисления и фосфорилирования.

Развивается при угнетении ферментов биологического окисления, например при отравлении цианидами, воздействии ионизирующего излучения и др.

Основное патогенетическое звено - недостаточность биологического окисления и как следствие дефицит энергии в клетках. При этом отмечаются нормальное содержание и напряжение кислорода в артериальной крови, повышение их в венозной крови, снижение артериовенозной разницы по кислороду.

Перегрузочный тип

Причина: чрезмерная или длительная гиперфункция какого-либо органа или ткани. Чаще это наблюдается при тяжелой физической работе.

Основные патогенетические звенья:

  • значительная венозная гипоксемия;
  • гиперкапния.

Субстратный тип

Причина: первичный дефицит субстратов окисления, как правило. глюкозы. Так. прекращение поступления глюкозы в головной мозг уже через 5-8 мин ведет к дистрофическим изменениям и гибели нейронов.

Основной патогенетический фактор - дефицит энергии в форме АТФ и недостаточное энергоснабжение клеток.

Смешанный тип

Причина: действие факторов, обусловливающих включение различных типов гипоксии. По существу любая тяжелая гипоксия, особенно длительно текущая, является смешанной.

СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЕ РАССТРОЙСТВА ПРИ ГИПОКСИИ

Нарушения обмена веществ и энергии выявляются уже на начальном этапе гипоксии и характеризуются:

  1. Снижением эффективности тканевого дыхания и как следствие - уменьшением образования и содержания в клетках энергии в форме АТФ и креатинфосфата.
  2. Активацией гликолиза и снижением в тканях содержания гликогена. В ответ на это из жировых депо организма мобилизуются липиды - другой источник образования энергии. В крови развивается гиперлипидемия, а во внутренних органах - жировая дистрофия.
  3. Увеличением уровня молочной и пировиноградной кислот в тканях и крови, что приводит к метаболическому ацидозу. Это тормозит интенсивность реакций гликолиза, окислительных и энергозависимых процессов в клетках, в том числе ресинтеза гликогена из молочной кислоты, что еще более угнетает гликолиз и способствует нарастанию ацидоза, т. е. гипоксия развивается по принципу «порочного круга».
  4. Активацией процессов липолиза и появлением жировой дистрофии органов и тканей.
  5. Дисбалансом электролитов - обычно увеличением в интерстициальной жидкости и крови ионов калия, в клетках - натрия и кальция.
  6. Расстройством функции нервной системы , что проявляется:
    • нарушением процессов мышления;
    • психомоторным возбуждением, немотивированным поведением;
    • нарушением и потерей сознания, что обусловлено высокой чувствительностью нейронов к дефициту кислорода и энергии. При тяжелой гипоксии уже через 5-7 мин выявляются признаки необратимой дистрофии и деструкции нейронов.
  7. Нарушениями кровообращения и кровоснабжения тканей и органов, что выражается:
    • снижением сократительной функции сердца и уменьшением сердечного выброса крови;
    • недостаточным кровоснабжением тканей и органов, что усугубляет степень гипоксии в них;
    • нарушением ритма сердца, вплоть до фибрилляции миокарда предсердий и желудочков;
    • прогрессирующим снижением артериального давления вплоть до коллапса и расстройств микроциркуляции.
  8. Расстройства внешнего дыхания характеризуются увеличением объема дыхания на начальной стадии гипоксии и нарушениями частоты, ритма и амплитуды дыхательных движений в терминальном периоде. При нарастании длительности и тяжести гипоксии период дискоординированного дыхания сменяется преходящей остановкой его. последующим развитием периодического дыхания (Биота, Куссмауля, Чейна-Стокса), а затем его прекращением. Это является результатом нарушения функций нейронов дыхательного центра.

МОРФОЛОГИЯ ГИПОКСИИ

Гипоксия является важнейшим звеном очень многих патологических процессов и болезней, а развиваясь в финале любых заболеваний, она накладывает свой отпечаток на картину болезни. Однако течение гипоксии может быть различным, и поэтому как острая, так и хроническая гипоксия имеют свои морфологические особенности.

Острая гипоксия , которая характеризуется быстрым нарушениями в тканях окислительно-восстановительных процессов, нарастанием гликолиза, закислением цитоплазмы клеток и внеклеточного матрикса, приводит к повышению проницаемости мембран лизосом, выходу гидролаз, разрушающих внутриклеточные структуры. Кроме того, гипоксия активирует перекисное окисление липидов, появляются свободнорадикальные перекисные соединения, которые разрушают мембраны клеток. В физиологических условиях в процессе обмена веществ постоянно возникает легкая степень гипоксии клеток, стромы, стенок капилляров и артериол. Это является сигналом к повышению проницаемости стенок сосудов и поступлению в клетки продуктов метаболизма и кислорода. Поэтому острая гипоксия, возникающая в условиях патологии, всегда характеризуется повышением проницаемости стенок артериол, венул и капилляров, что сопровождается плазморрагией и развитием периваскулярных отеков. Резко выраженная и относительно длительная гипоксия приводит к развитию фибриноидного некроза стенок сосудов. В таких сосудах кровоток прекращается, что усиливает ишемию стенки и происходит диапедез эритроцитов с развитием периваскулярных кровоизлияний. Поэтому, например, при острой сердечной недостаточности, которая характеризуется быстрым развитием гипоксии, плазма крови из легочных капилляров поступает в альвеолы и возникает острый отек легких. Острая гипоксия мозга приводит к периваскулярному отеку и набуханию ткани мозга с вклинением его стволовой части в большое затылочное отверстие и развитием комы, приводящей к смерти.

Хроническая гипоксия сопровождается долговременной перестройкой обмена веществ, включением комплекса компенсаторных и приспособительных реакций, например гиперплазией костного мозга для увеличения образования эритроцитов. В паренхиматозных органах развивается и прогрессирует жировая дистрофия и атрофия. Кроме того, гипоксия стимулирует в организме фибробластическую реакцию, активизируются фибробласты, в результате чего параллельно с атрофией функциональной ткани нарастают склеротические изменения органов. На определенном этапе развития заболевания изменения, обусловленные гипоксией, способствуют снижению функции органов и тканей с развитием их декомпенсации.

АДАПТИВНЫЕ РЕАКЦИИ ПРИ ГИПОКСИИ

При гипоксии в организме активируются приспособительные и компенсаторные реакции, направленные на ее предотвращение, устранение или снижение степени выраженности. Эти реакции включаются уже на начальном этапе гипоксии - их обозначают как экстренные, или срочные, в последующем (при длительной гипоксии) они сменяются более сложными приспособительными процессами - долговременными.

Механизмы срочной адаптации активируются сразу при возникновении гипоксии в связи с недостаточностью энергетического обеспечения клеток. К числу основных механизмов относятся системы транспорта кислорода и субстратов обмена веществ, а также тканевого метаболизма.

Дыхательная система реагирует увеличением альвеолярной вентиляции за счет углубления, учащения дыхания и мобилизации резервных альвеол. Одновременно усиливается легочный кровоток.

Сердечно-сосудистая система. Активация ее функции в виде увеличения сердечного выброса крови и изменения тонуса сосудов обеспечивает возрастание объема циркулирующей крови (за счет опорожнения кровяных депо), венозного возврата, а также перераспределением кровотока между различными органами. Все это направлено на преимущественное кровоснабжение мозга, сердца и печени. Этот феномен обозначают как «централизация» кровотока.

Система крови.

В ней происходят изменения свойств гемоглобина. что обеспечивает насыщение крови кислородом в легких даже при значительном его дефиците и более полное отщепление кислорода в тканях.

Адаптивные реакции на уровне тканей характеризуются ослаблением функции органов, обмена веществ и пластических процессов в них, увеличением сопряженности окисления и фосфорилирования, усилением анаэробного синтеза АТФ за счет активации гликолиза. В целом это снижает расход кислорода и субстратов обмена веществ.

Механизмы долговременной адаптации формируются постепенно в процессе хронической гипоксии, продолжаются на всем ее протяжении и даже в течение некоторого времени после ее прекращения. Именно эти реакции обеспечивают жизнедеятельность организма в условиях гипоксии при хронической недостаточности кровообращения, нарушении дыхательной функции легких, длительных анемических состояниях. К основным механизмам долговременной адаптации при хронической гипоксии относят:

  • стойкое увеличение диффузионной поверхности легочных альвеол;
  • более эффективную корреляцию легочной вентиляции и кровотока:
  • компенсаторную гипертрофию миокарда;
  • гиперплазию костного мозга и увеличенное содержание гемоглобина в крови.

1. Дыхательная недостаточность, ее формы и причины.

2. Формы нарушения альвеолярной вентиляции. Гиповентиляция: причины возникновения и влияние на газовый состав крови.

3. Альвеолярная гипервентиляция, неравномерная альвеолярная вентиляция. Причины возникновения и влияние на газовый состав крови.

4. Возникновение дыхательной недостаточности при нарушениях легочной микроциркуляции и вентиляционно-перфузионных отношений.

5. Возникновение дыхательной недостаточности при изменении газового состава вдыхаемого воздуха и диффузионной способности альвеолярно-капиллярного барьера.

6. Влияние нарушений метаболической функции легких на гемодинамику и систему гемостаза. Причины и механизмы возникновения респираторного дистресс-синдрома.

7. Роль нарушений сурфактантной системы в патологии легких.

8. Одышка, ее причины и механизмы.

9. Патогенез изменений внешнего дыхания при нарушении проходимости верхних отделов дыхательных путей.

10. Патогенез изменений внешнего дыхания при нарушении проходимости нижних отделов дыхательных путей и эмфиземе легких.

11. Патогенез изменений внешнего дыхания при пневмониях, отеке легких и поражениях плевры.

12. Патогенез изменений внешнего дыхания при право- и левожелудочковой сердечной недостаточности.

13. Гипоксия: классификация, причины возникновения и характеристика. Асфиксия, причины, стадии развития (лекция, уч. А. Д. Адо 1994г., 354-357; уч. В.В. Новицкого, 2001 г., с. 528-533).

14. Влияние на организм повышения и понижения барометрического давления. Патологическое дыхание (уч. А. Д. Адо 1994 г., с.31-32, с.349-350; уч. В.В. Новицкого, 2001 г., с.46-48, с.522-524).

15. Приспособительные механизмы при гипоксии (срочные и долговременные). Повреждающее действие гипоксии (уч. А. Д. Адо 1994г., стр. 357-361; уч. В.В. Новицкого, 2001 г., с.533-537).

3.3. Патофизиология системы крови (метод. пособие "Патофизиология кроветворной системы).

1. Изменения общего объема крови. Кровопотеря (уч.Адо, 1994г, с.268-272; уч. В.В. Новицкого, 2001 г., с. 404-407).

2. Регуляция гемопоэза и причины ее нарушения.

3. Определение понятия "анемия". Признаки изменений эритропоэза и характеристики анемий.

4. Патогенетическая классификация анемий.

5. Причины уменьшения образования эритроцитов и характеристика анемий, возникающих в результате этого.

6. Причины нарушения дифференцировки эритроцитов и характеристика анемий, возникающих в результате этого.

7. Причины уменьшения синтеза гемоглобина и характеристика анемий, возникающих в результате этого.

8. Гемолитические анемии. Их причины и характеристика.

9. Патогенез острой постгеморрагической анемии и ее характеристика.

10. Патогенез лейкоцитозов и лейкопений, их виды. Лейкемоидные реакции.

11. Понятие о гемобластозах. Лейкозы, их классификация и изменения периферической крови, характерные для них.

12. Эритроцитозы и эритремии.

13. Лучевая болезнь: этиология, патогенез, формы, периоды, изменения крови (уч. А. Д. Адо, 1994 г. с.39-44; уч. В.В. Новицкого, 2001 г., с. 54-60 раздел 2.8)

1

10.1. Классификация гипоксических состояний

Гипоксия - типовой патологический процесс, характеризующийся снижением содержания кислорода в крови (гипоксемией) и тканях, развитием комплекса вторичных неспецифических метаболических и функциональных расстройств, а также реакцией адаптации.

Первая классификация гипоксических состояний была предложена Баркрофтом (1925), а затем дополнена и усовершенствована И.Р. Петровым (1949). Классификация И.Р. Петрова используется и в наше время. Согласно этой классификации различают гипоксии экзогенного и эндогенного происхождения.

В основе гипоксии экзогенного происхождения лежит недостаток кислорода во вдыхаемом воздухе, в связи с чем выделяют нормобарическую и гипобарическую гипоксию. К гипоксиям эндогенного происхождения относятся следующие типы:

а) дыхательная (респираторная); б) сердечно-сосудистая (циркуляторная); в) гемическая (кровяная); г) тканевая (гистотоксическая); д) смешанная.

По течению различают:

Молниеносную (в течение нескольких секунд, например, при разгерметизации летательных аппаратов на большой высоте);

Острую (которая развивается через несколько минут или в пределах часа в результате острой кровопотери, острой сердечной или дыхательной недостаточности, при отравлении угарным газом, цианидами, при шоке, коллапсе);

Подострую (она формируется в течение нескольких часов при попадании в организм метгемоглобинообразователей, таких как нитраты, бензол, а в ряде случаев в результате медленно нарастающей дыхательной или сердечной недостаточности;

Хроническую гипоксию, которая возникает при дыхательной и сердечной недостаточности и других формах патологии, а также при хронической анемии, пребывании в шахтах, колодцах, при работе в водолазных и защитных костюмах.

Различают:

а) местную (локальную) гипоксию, развивающуюся при ишемии, венозной гиперемии, престазе и стазе в зоне воспаления;

б) общую (системную) гипоксию, которая наблюдается при гиповолемии, сердечной недостаточности, шоке, коллапсе, ДВС-синдроме, анемиях.

Известно, что наиболее устойчивыми к гипоксии являются кости, хрящи и сухожилия, которые сохраняют нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом. Поперечно-полосатые мышцы выдерживают гипоксию в течение 2 часов; почки, печень - 20-30 минут. Наиболее чувствительна к гипоксии кора головного мозга.

10.2. Общая характеристика этиологических и патогенетических факторов гипоксий экзогенного и эндогенного происхождения

Экзогенный тип гипоксии развивается при уменьшении парциального давления кислорода в воздухе, поступающем в организм. При нормальном барометрическом давлении говорят о нормобарической экзогенной гипоксии (примером может служить нахождение в замкнутых помещениях малого объема). При снижении барометрического давления развивается гипобарическая экзогенная гипоксия (последнее наблюдается при подъеме на высоту, где РО2 воздуха снижено примерно до 100 мм рт. ст. Установлено, что при снижении РО2 до 50 мм рт. ст. возникают тяжелые расстройства, несовместимые с жизнью).

В ответ на изменение показателей газового состава крови (гипоксемию и гиперкапнию) возбуждаются хеморецепторы аорты, каротидных клубочков, центральные хеморецепторы, что вызывает стимуляцию бульбарного дыхательного центра, развитие тахи- и гиперпное, газового алкалоза, увеличение числа функционирующих альвеол.

Эндогенные гипоксические состояния являются в большинстве случаев результатом патологических процессов и болезней, приводящих к нарушению газообмена в легких, недостаточному транспорту кислорода к органам или к нарушению его утилизации тканями.

Дыхательная (респираторная) гипоксия

Респираторная гипоксия возникает вследствие недостаточности газообмена в легких, которая может быть обусловлена следующими причинами: альвеолярной гиповентиляцией, сниженной перфузией кровью легких, нарушением диффузии кислорода через аэрогематический барьер, и соответственно, нарушением вентиляционно-перфузионного соотношения. Патогенетическую основу дыхательной гипоксии составляют снижение содержания оксигемоглобина, повышение концентрации восстановленного гемоглобина, гиперкапния и газовый ацидоз.

Гиповентиляция легких является результатом действия ряда патогенетических факторов:

а) нарушения биомеханических свойств дыхательного аппарата при обструктивных и рестриктивных формах патологии;

б) расстройств нервной и гуморальной регуляции вентиляции легких;

в) снижения перфузии легких кровью и нарушения диффузии О2 через аэрогематический барьер;

г) избыточного внутри- и внелегочного шунтирования венозной крови.

Циркуляторная (сердечно-сосудистая, гемодинамическая) гипоксия развивается при локальных, региональных и системных нарушениях гемодинамики. В зависимости от механизмов развития циркуляторной гипоксии можно выделить ишемическую и застойную формы. В основе циркуляторной гипоксии может лежать абсолютная недостаточность кровообращения или относительная при резком возрастании потребности тканей в кислородном обеспечении (при стрессорных ситуациях).

Генерализованная циркуляторная гипоксия возникает при сердечной недостаточности, шоке, коллапсе, обезвоживании организма, ДВС-синд-роме и т.д., причем, если нарушения гемодинамики возникают в большом круге кровообращения, насыщение крови кислородом в легких может быть нормальным, а нарушается его доставка к тканям в связи с развитием венозной гиперемии и застойных явлений в большом круге кровообращения. При нарушениях гемодинамики в сосудах малого круга кровообращения страдает оксигенация артериальной крови. Локальная циркуляторная гипоксия возникает в зоне тромбоза, эмболии, ишемии, венозной гиперемии в тех или иных органах и тканях.

Особое место занимает гипоксия, связанная с нарушением транспорта кислорода в клетки при снижении проницаемости мембран для О2. Последнее наблюдается при интерстициальном отеке легких, внутриклеточной гипергидратации.

Для циркуляторной гипоксии характерны: снижение РаО2, увеличение утилизации О2 тканями вследствие замедления кровотока и активации системы цитохром, возрастание уровня ионов водорода и углекислого газа в тканях. Нарушение газового состава крови приводит к рефлекторной активации дыхательного центра, развитию гиперпноэ, увеличению скорости диссоциации оксигемоглобина в тканях.

Гемический (кровяной) тип гипоксии возникает в результате уменьшения эффективной кислородной емкости крови и, следовательно, ее кислород транспортирующей функции. Транспорт кислорода от легких к тканям почти полностью осуществляется при участии Hb. Главными звеньями снижения кислородной емкости крови являются:

1) уменьшение содержания Нb в единице объема крови и в полном объеме, например, при выраженных анемиях, обусловленных нарушением костно-мозгового кроветворения различного генеза, при постгеморрагических и гемолитической анемиях.

2) нарушение транспортных свойств Нb, которое может быть обусловлено либо снижением способности Нb эритроцитов связывать кислород в капиллярах легких, либо транспортировать и отдавать оптимальное количество его в тканях, что наблюдается при наследственных и приобретенных гемоглобинопатиях.

Достаточно часто гемическая гипоксия наблюдается при отравлении окисью углерода («угарным газом»), так как окись углерода обладает чрезвычайно высоким сродством к гемоглобину, почти в 300 раз превосходя сродство к нему кислорода. При взаимодействии окиси углерода с гемоглобином крови образуется карбоксигемоглобин, лишенный способности транспортировать и отдавать кислород.

Окись углерода содержится в высокой концентрации в выхлопных газах двигателей внутреннего сгорания, в бытовом газе и т.д.

Выраженные нарушения жизнедеятельности организма развиваются при увеличении содержания в крови НbСО до 50% (от общей концентрации гемоглобина). Повышение его уровня до 70-75 % приводит к тяжелой гипоксемии и летальному исходу.

Карбоксигемоглобин имеет ярко-красный цвет, поэтому при его избыточном образовании в организме кожа и слизистые становятся красными. Устранение СО из вдыхаемого воздуха приводит к диссоциации НbСО, но этот процесс протекает медленно и занимает несколько часов.

Воздействие на организм ряда химических соединений (нитратов, нитритов, окисла азота, бензола, некоторых токсинов инфекционного происхождения, лекарственных средств: феназепама, амидопирина, сульфаниламидов, продуктов ПОЛ и т.д.) приводит к образованию метгемоглобина, который не способен переносить кислород, так как содержит окисную форму железа (Fe3+).

Окисная форма Fe3+ обычно находится в связи с гидроксилом (ОН-). МетНb имеет темно-коричневую окраску и, именно этот оттенок приобретают кровь и ткани организма. Процесс образования метНb носит обратимый характер, однако его восстановление в нормальный гемоглобин происходит относительно медленно (в течение нескольких часов), когда железо Нb вновь переходит в закисную форму. Образование метгемоглобина не только снижает кислородную емкость крови, но и уменьшает способность активного оксигемоглобина диссоциировать с отдачей кислорода тканям.

Тканевая (гистотоксическая) гипоксия развивается вследствие нарушения способности клеток поглощать кислород (при нормальной его доставке к клетке) или в связи с уменьшением эффективности биологического окисления в результате разобщения окисления и фосфорилирования.

Развитие тканевой гипоксии связывают со следующими патогенетическими факторами:

1. Нарушением активности ферментов биологического окисления в процессе:

а) специфического связывания активных центров фермента, например, цианидами и некоторыми антибиотиками;

б) связывания SН-групп белковой части фермента ионами тяжелых металлов (Аg2+, Нg2+, Сu2+), в результате чего образуются неактивные формы фермента;

в) конкурентного блокирования активного центра фермента веществами, имеющими структурную аналогию с естественным субстратом реакции (оксалаты, малонаты).

2. Нарушением синтеза ферментов, которое может возникать при дефиците витаминов В1 (тиамина), ВЗ (РР), никотиновой кислоты и др., а также при кахексии различного происхождения.

3. Отклонениями от оптимума физико-химических параметров внутренней среды организма: рН, температуры, концентрации электролитов и др. Эти изменения возникают при разнообразных заболеваниях и патологических состояниях (гипотермиях и гипертермиях, недостаточности почек, сердца и печени, анемиях) и снижают эффективность биологического окисления.

4. Дезинтеграцией биологических мембран, обусловленной воздействием патогенных факторов инфекционной и неинфекционной природы, сопровождающейся снижением степени сопряжения окисления и фосфорилирования, подавлением образования макроэргических соединений в дыхательной цепи. Способностью разобщать окислительное фосфорилирование и дыхание в митохондриях обладают: избыток ионов Н+ и Са2+, свободных жирных кислот, адреналина, тироксина и трийодтиронина, некоторых лекарственных веществ (дикумарина, грамицидина и др.). В этих условиях увеличиваются расход кислорода тканями. В случаях набухания митохондрий, разобщения окислительного фосфорилирования и дыхания большая часть энергии трансформируется в тепло и не используется для ресинтеза макроергов. Эффективность биологического окисления снижается.

Библиографическая ссылка

Чеснокова Н.П., Брилль Г.Е., Полутова Н.В., Бизенкова М.Н. ЛЕКЦИЯ 10 ГИПОКСИИ: ВИДЫ, ЭТИОЛОГИЯ, ПАТОГЕНЕЗ // Научное обозрение. Медицинские науки. – 2017. – № 2. – С. 53-55;
URL: https://science-medicine.ru/ru/article/view?id=979 (дата обращения: 18.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В начале этого подраздела приведем некоторые обозначения и нормативные величины.

Экзогенный тип гипоксии.

Этот тип гипоксии возникает вследствие уменьшения парциального давления кислорода во вдыхаемом воздухе.

Гипобарическая гипоксия.

Данный тип гипоксии обусловлен общим снижением барометрического давления и наблюдается при подъеме в горы или в негерметичных летательных аппаратах без индивидуальных кислородных систем (горная, или высотная, болезнь).

Заметные нарушения обычно отмечаются при Ро примерно 100 мм рт.ст. (что соответствует высоте около 3 500 м): при 50-55 мм рт.ст. (8000-8 500 м) возникают тяжелые расстройства, несовместимые с жизнью. В специальных целях дозированную гипобарическую гипоксию вызывают путем постепенного откачивания воздуха из барокамер, в которых находятся испытуемые люди или экспериментальные животные, имитируя тем самым подъем на высоту.

Нормобарическая гипоксия.

Такой тип гипоксии развивается при нормальном общем барометрическом давлении, но сниженном парциальном давлении кислорода во вдыхаемом воздухе, например, при нахождении в замкнутых помещениях малого объема, работах в шахтах, при неисправностях систем кислородообеспечения в кабинах летательных аппаратов, подводных лодках, специальных защитных костюмах, а также при некоторых неисправностях или неправильном использовании наркозно-дыхательной аппаратуры.

Патогенетической основой экзогенного типа гипоксии во всех случаях является артериальная гипоксемия, т.е. уменьшение напряжения кислорода £ плазме артериальной крови, приводящее к недостаточному насыщению гемоглобина кислородом и общему со-держанию его в крови. Дополнительное отрицательное влияние на организм может оказывать гипокапния. нередко развивающаяся при экзогенной гипоксии в результате компенсаторной гипервентиляции легких и приводящая к ухудшению кровоснабжения мозга, сердца, нарушениям электролитного баланса и газовому алкалозу.

Дыхательный (респираторный) тип гипоксии.

Эта гипоксия возникает в результате недостаточности газообмена в легких в связи с альвеолярной гиповентиляцией, нарушениями легочного кровотока, вентиляционно-перфузионных соотношений, избыточным вне- и внутрилегочным шунтированием венозной крови пли при затруднении диффузии кислорода в легких. Патогенетической основой респираторной гипоксии, гак же как и экзогенной, является артериальная гипоксия, в большинстве случаев сочетающаяся с гиперкапнией. В отдельных случаях в связи с тем, что СО 2 диффундирует через альвеолокапиллярную мембрану примерно в 20 раз легче, чем О 2 , возможна гипоксемия без гиперкапнии.

Сердечно-сосудистый (циркуляторный) тип гипоксии.

Болезнь развивается при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей и, следовательно, к недостаточному их снабжению кислородом. Уменьшение количества крови, протекающей через капилляры в единицу времени, может быть обусловлено обшей гиповолемией, т.е. уменьшением объема крови в сосудистом русле (при массивной кровопотере или плазмопотере, обезвоживании организма) и нарушениями функций сердца и сосудов. Расстройства сердечной деятельности могут быть следствием повреждения миокарда, перегрузки сердца и нарушений экстракардиальной регуляции, приводящих к уменьшению минутного объема сердца. Циркуляторная гипоксия сосудистого происхождения может быть связана с чрезмерным увеличением емкости сосудистого русла и депонированной фракции крови вследствие пареза сосудистых стенок в результате экзо- и эндогенных токсических влияний, аллергических реакций, нарушений электролитного баланса, при недостаточности глюкокортикоидов. минералокортикоидов и некоторых других гормонов, а также при нарушениях рефлекторной и центрогенной вазомоторной регуляции и других патологических состояниях, сопровождающихся падением тонуса сосудов.

Гипоксия может возникать в связи с первичными расстройствами микроциркуляции: распространенными изменениями стенок микрососудов, агрегацией форменных элементов крови, повышением ее вязкости, свертываемости и другими факторами, затрудняющими продвижение крови через капиллярную сеть, вплоть до полного стаза. Причиной нарушений микроциркуляции может стать избыточное артериоловенулярное шунтирование крови, обусловленное спазмом прекапиллярных сфинктеров (например, при острой кровопотере).

Особое место занимает гипоксия, связанная с нарушением транспорта кислорода в клетки на внесосудистом участке микроциркуляторной системы: периваскулярном, межклеточном и внутриклеточном пространствах, базальной и клеточной мембранах. Такая форма гипоксии возникает при ухудшении проницаемости мембран для кислорода, при интерстициальном отеке, внутриклеточной гипергидратации и других патологических изменениях межклеточной среды.

Циркуляторная гипоксия может носить локальный характер при недостаточном притоке крови к отдельному органу или участку ткани или затруднении оттока крови при ишемии, венозной гиперемии.

Отдельные гемодинамические показатели в разных случаях циркуляторной гипоксии могут варьировать в широких пределах. Для газового состава крови в типичных случаях характерно нормальное напряжение и содержание кислорода в артериальной крови, снижение этих показателей в смешанной венозной крови и соответственно высокая артериовенозная разница по кислороду. Исключением могут стать случаи распространенного прекапиллярного шунтирования, когда значительная часть крови переходит из артериальной системы в венозную, минуя обменные микрососуды, в результате чего в венозной крови остается больше кислорода, и степень венозной гипоксемии не отражает реальную тяжесть гипоксии лишенных капиллярного кровотока органов и тканей.

Следовательно, для оценки генерализованной циркуляторной гипоксии такой интегральный показатель, как Р аО2 (при условии нормальных значений P аО2 , S аО2 и V аО2), должен использоваться с учетом возможных искажений его значения для реально существующей в организме ситуации.

Кровяной (гемический) тип гипоксии.

Данное состояние возникает в результате уменьшения эффективной кислородной емкости крови вследствие недостаточного содержания гемоглобина при анемиях (Гемический тип гипоксии иногда называют «анемическим», что неправильно. Анемическая гипоксия является лишь одной из многочисленных форм гемической гипоксии.), гидремии и при нарушении способности гемоглобина связывать, транспортировать и отдавать тканям кислород.

Выраженные анемии могут быть обусловлены подавлением костномозгового кроветворения в результате его истощения, повреждения токсическими факторами, ионизирующей радиацией, лейкозным процессом и метастазами опухолей, а также при дефиците компонентов, необходимых для нормального эритролоэза и синтеза гемоглобина (железа, витаминов, эритропоэтина и др.), и при усиленном гемолизе эритроцитов.

Кислородная емкость крови понижается при гемодилюции различного происхождения, например во второй стадии постгеморрагического периода, при вливании значительных объемов физиологического раствора, различных кровезаменителей.

Нарушения кислородтранспортных свойств крови могут развиваться при качественных изменениях гемоглобина.

Наиболее часто такая форма гемической гипоксии наблюдается при отравлении оксидом углерода (угарным газом), приводящем к образованию карбоксигемоглобина (НЬСО - комплекс ярко-красного цвета); метгемоглобинообразователями, при некоторых врожденных аномалиях гемоглобина, а также при нарушениях физико-химических свойств внутренней среды организма, влияющих на процессы его оксигенации в капиллярах легких и дезоксигенации в тканях.

Оксид углерода обладает чрезвычайно высоким сродством к гемоглобину, почти в 300 раз превосходя сродство к нему кислорода и образуя лишенный способности транспортировать и отдавать кислород карбоксигемоглобин,

Интоксикация оксидом углерода возможна в различных производственных условиях: металлургических цехах, на коксохимических, кирпичных и цементных заводах, различных химических производствах, а также в гаражах, на городских магистралях с интенсивным автотранспортным движением, особенно при значительном скоплении автотранспорта в безветренную погоду и т.п. Случаи отравления оксидом углерода нередки в жилых помещениях при неисправности газовых приборов или печного отопления, а также при пожарах. Даже при относительно небольших концентрациях оксида углерода в воздухе тяжелая гипоксия может наступить через несколько минут; при длительном вдыхании опасны даже минимальные концентрации оксида углерода. Так, при содержании примерно 0,005 % оксида углерода в воздухе до 30 % гемоглобина превращается в НbСО; при концентрации 0,01 % образуется около 70 % НbСО, что является смертельным. При устранении СО из вдыхаемого воздуха происходит медленная диссоциация НbСО и восстановление нормального гемоглобина.

Метгемоглобии - MtHb (окрашенный в темно-коричневый цвет) - отличается от нормального Нb тем, что железо гема в нем находится не в виде Fe 2+ , а окислено до Fe 3+ Таким образом, MtHb представляет собой «истинно» окисленную форму Нb, причем к дополнительной валентности железа в качестве лиганда обычно присоединяется ион гидроксила (ОН»). Вылолнять транспорт кислорода MtHb не способен. Небольшие «физиологические» количества метгемоглобина постоянно образуются в организме под воздействием активных форм кислорода; патологическая метгемоглобинемия возникает при воздействии большой группы веществ - так называемых метгемоглобинообразователей. К ним относятся нитраты и нитриты, оксиды азота, производные анилина, бензола, некоторые токсины инфекционного происхождения, лекарственные вещества (фенозепам, амидопирин, сульфаниламиды) и др. Значительные количества MtHb могут образоваться при накоплении в организме энлогенных пероксидов и других активных радикалов). При этом важно, что в каждом из четырех гемов молекулы гемоглобина атом железа окисляется практически независимо от других гемов той же молекулы. Возникающие в результате частично «искаженные» молекулы лишены нормального «гем-гем» взаимодействия, определяющего оптимальную способность гемоглобина связывать кислород в легких и отдавать его в тканях по закону S-образной кривой диссоциации оксигемоглобина. В связи с этим превращение, например, 40% НЬ в MtHb приводит к ухудшению снабжения организма кислородом в гораздо большей степени, чем, например, дефицит 40% гемоглобина при анемиях, гемодилюции и т.п.

Процесс образования MtHb носит обратимый характер, однако его восстановление в нормальный гемоглобин происходит относительно медленно в течение многих часов.

Кроме НbСО и MtHb при различных интоксикациях возможно образование и других соединений Нb, которые плохо переносят О 2: нитрокси-Нb , карбиламин-Hb и др.

Ухудшение транспортных свойств гемоглобина может быть обусловлено наследственными дефектами строения его молекулы. Такие патологические формы Нb могут обладать как пониженным, так и значительно повышенным сродством к O 2 , что сопровождается затруднением присоединения 0 2 в легких или его отдачи в тканях.

Неблагоприятное влияние на условия оксигенации и дезоксигенации НЬ могут оказывать некоторые сдвиги физико-химических свойств среды: pH, Р СОз, концентрации электролитов и др. Смещение кривой насыщения Нb может также возникать при гипероксии в результате повреждения системы гликолиза в эритроцитах и изменения содержания в них 2,3-дифосфоглицерата. Значительное ухудшение переноса и отдачи кровью 0 2 наступает также при изменениях физических свойств эритроцитов, их значительной агрегации и сладже.

Для гемической гипоксии характерно сочетание нормального напряжения кислорода в артериальной крови с пониженным его объемным содержанием. Напряжение и содержание О 2 в венозной крови понижены.

Тканевый (или первично-тканевый) тип гипоксии.

Развивается тканевый тип гипоксии вследствие нарушения способности клеток поглощать кислород (при нормальной его доставке в клетки) или в связи с уменьшением эффективности биологического окисления в результате разобщения окисления и фосфорилирования.

Утилизация О 2 тканями может затрудняться в результате действия различных ингибиторов ферментов биологического окисления, неблагоприятных изменений физико-химических условий их действия, нарушения синтеза ферментов и дезинтеграции биологических мембран клетки.

Ингибирование ферментов может происходить тремя основными путями:

  1. специфическое связывание активных центров фермента, например, весьма активное связывание трехвалентного железа окисленной формы геминфермента ионом CN — при отравлении цианидами, подавление активных центров дыхательных ферментов ионом сульфида, некоторыми антибиотиками и др.;
  2. связывание функциональных групп белковой части молекулы фермента (ионы тяжелых металлов, алкилирующие агенты);
  3. конкурентное торможение путем блокады активного центра ферментов «псевдосубстрагами», например, ингибирование сукцинатдегидрогеназы малоновой и другими дикар-боновыми кислотами.

Отклонения физико-химических параметров внутренней среды организма : pH, температуры, концентрации электролитов, возникающие при разнообразных заболеваниях и патологических процессах, также могут существенно снижать активность ферментов биологического окисления.

Нарушение синтеза ферментов может возникать при дефиците специфических компонентов, необходимых для их образования: витаминов В 1 (тиамина), В 3 (РР, никотиновой кислоты) и других, а также при кахексии различного происхождения и других патологических состояниях, сопровождающихся грубыми нарушениями белкового обмена.

Дезинтеграция биологических мембран является одним из важнейших факторов, приводящих к нарушению утилизации О 2 . Такая дезинтеграция может быть обусловлена многочисленными патогенными воздействиями, вызывающими повреждения клетки: высокой и низкой температурой, экзогенными ядами и эндогенными продуктами нарушенного метаболизма, инфекционно-токсическими агентами, проникающей радиацией, свободными радикалами и др. Нередко повреждение мембран возникает как осложнение гипоксии респираторного, циркуляторного или гемического типа. Практически любое тяжелое состояние организма содержит элемент тканевой гипоксии такого рода.

Гипоксия разобщения представляет собой своеобразный вариант гипоксии тканевого типа, возникающий при резко выраженном уменьшении сопряженности окисления и фосфорилирования вдыхательной цепи. Потребление тканями 0 2 при этом обычно возрастает, однако значительное увеличение доли энергии, рассеиваемой в виде избыточно образующегося тепла приводит к энергетическому обесцениванию тканевого дыхания и его относительной недостаточности. Разобщающими свойствами обладают многие вещества экзо- и эндогенного происхождения: избыток ионов Н 4 и Са 24 , свободных жирных кислот, адреналина, тироксина и трийодтиронина, а также некоторые лекарственные вещества (дикумарин, грамицидин и др.). микробные токсины и другие агенты.

Инволюционная гипоксия , возникающая при старении организма, по своим механизмам также в значительной степени связана с процессами, приводящими к нарушению эффективной утилизации клетками кислорода. К таким процессам относятся: разрушение мембран митохондрий и разрыв цепи переноса электронов; увеличение внутриклеточного фонда свободных жирных кислот; перекрестное связывание макромолекул и их иммобилизация и ряд других процессов.

Газовый состав крови в типичных случаях тканевой гипоксии характеризуется нормальными параметрами клслорода в артериальной крови , значительным их повышением в венозной крови и соответственно уменьшением артериовенозной разницы по кислороду (при гипоксии разобщения могут складываться другие соотношения).

Перегрузочный тик гипоксии («гипоксия нагрузки»).

Такой тип гипоксии возникает при чрезмерно напряженной деятельности какого-либо органа или ткани, когда функциональные резервы систем транспорта и утилизации кислорода и субстратов даже без наличия в них патологических изменений оказываются недостаточными для обеспечения резко увеличенной потребности. Практическое значение эта форма гипоксии имеет в основном применительно к тяжелым нагрузкам на мышечные органы — скелетную мускулатуру и миокард.

При чрезмерной нагрузке на сердце возникают относительная коронарная недостаточность, циркуляторная гипоксия сердца и вторичная общая циркуляторная гипоксия. При чрезмерной мышечной работе наряду с гипоксией самой скелетной мускулатуры возникают конкурентные отношения в распределении кровотока, приводящие к ишемии других тканей и развитою распространенной циркуляторной гипоксии. Для гипоксии нагрузки характерны значительная кислородная «задолженность», венозная гипоксемия и гиперкапния.

Субстратный тип гипоксии.

В абсолютном большинстве случаев гипоксия связана с недостаточным транспортом или нарушением утилизации О 2 . В нормальных условиях запас субстратов биологического окисления в организме достаточно велик и немного превосходит резервы О 2 . Однако в некоторых случаях при нормальной доставке О 2 , нормальном состоянии мембран и ферментных систем возникает первичный дефицит субстратов, приводящий к нарушению работы всех взаимосвязанных звеньев биологического окисления. Почти в большинстве случаев такая гипоксия связана с дефицитом в клетках глюкозы. Так. прекращение поступления глюкозы в головной мозг уже через 5 - 8 мин (т.е. примерно через такой же срок, как после прекращения доставки О 2) ведет к гибели наиболее чувствительных нервных клеток. Углеводное голодание инсулинзависимых тканей возникает при некоторых формах сахарного диабета и других расстройствах углеводного обмена. Подобная форма гипоксии может развиться и при дефиците некоторых других субстратов (например, жирных кислот в миокарде, при общем тяжелом голодании и др.). Потребление кислорода при данной форме гипоксии в результате недостатка субстратов окисления также обычно снижено.

Смешанный тип гипоксии.

Этот тип гипоксии наблюдается наиболее часто и представляет собой сочетание двух и более основных ее типов.

В некоторых случаях гипоксический фактор сам по себе отрицательно влияет на несколько звеньев транспорта и утилизации О 2 (например, барбитураты подавляют окислительные процессы в клетках и одновременно угнетают дыхательный центр, вызывая легочную гиповентиляцию; нитриты наряду с образованием метгемоглоби-на могут выступать в качестве разобщающих агентов и т.п.). Аналогичные состояния возникают при одновременном действии на организм нескольких различных по точкам приложения гипоксических факторов.

Еще один часто встречающийся механизм смешанных форм гипоксии связан с тем, что первично возникающая гипоксия любого типа, достигнув определенной степени, вызывает нарушения других органов и систем, участвующих в обеспечении биологического окисления.

Во всех подобных случаях возникают гипоксические состояния смешанного типа: кровяного и тканевого, тканевого и дыхательного и т.д. Примерами могут служить травматический и другие виды шока, коматозные состояния различного происхождения и др.

Характеристика гипоксических состояний по различным критериям

По критерию распространенности принято различать местную и общую гипоксии.

Местная гипоксия чаще всего связана с локальными нарушениями кровоснабжения в виде ишемии, венозной гиперемии и локального стаза, т.е. относится к циркуляторному типу. В некоторых случаях может возникать местное нарушение утилизации кислорода и субстратов в результате локального повреждения клеточных мембран и подавления активности ферментов, вызванного каким-либо патологическим процессом (например воспалением). Другие участки аналогичной ткани гипоксию при этом не испытывают. Однако в таком случае обычно в области повреждения в той или иной степени страдает также сосудистая система и, следовательно, наблюдается смешанная форма гипоксии: тканевая и циркуляторная.

Общая гипоксия является более сложным понятием. Из названия вытекает, что данная форма гипоксии не имеет точных геометрических границ и носит распространенный характер.

Однако известно, что устойчивость различных органов и тканей к гипоксии неодинакова и достаточно сильно колеблется. Некоторые ткани (например, кости, хрящи, сухожилия) относительно малочувствительны к гипоксии и могут сохранять нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом; поперечнополосатые мышцы выдерживают аналогичную ситуацию около 2 ч; сердечная мышца 20 - 30 мин; почки, печень примерно столько же. Наиболее чувствительна к гипоксии нервная система. Различные ее отделы также отличаются неодинаковой чувствительностью к гипоксии, которая убывает в ряду: кора больших полушарий, мозжечок, зрительный бугор, гиппокамп, продолговатый мозг, спинной мозг, ганглии вегетативной нервной системы. При полном прекращении снабжения кислородом признаки повреждения в коре мозга обнаруживаются через 2,5-3 мин, в продолговатом мозге через 10-15 мин, в ганглиях симпатической нервной системы и нейронах кишечных сплетений более чем через 1 ч. При этом чем выше функциональная активность нервных структур, тем они более чувствительны к гипоксии. Так, отделы головного мозга, находящиеся в возбужденном состоянии, страдают в большей степени, чем неактивные.

Таким образом, строго говоря, при жизни организма действительно обшей гипоксии быть не может. В абсолютном большинстве случаев при любой ее тяжести различные органы и ткани находятся в разном состоянии, и некоторые из них гипоксии не испытывают. Однако учитывая исключительную важность мозга для жизнедеятельности организма, его весьма высокую потребность в кислороде (до 20% всего потребления О 2) и особенно выраженную ранимость при гипоксии, общее кислородное голодание организма часто отождествляют именно с гипоксией головного мозга.

По скорости развития, продолжительности и степени тяжести гипоксии точных объективных критериев для ее разграничения пока не существует. Однако в повседневной клинической практике обычно различают следующие ее виды: молниеносная гипоксия , развивающаяся до тяжелой или даже смертельной степени за секунды или немногие десятки секунд; острая гипоксия - в течение нескольких минут или десятков минут; подострая гипоксия - в течение нескольких часов или десятков часов; хроническая гипоксия развивается и продолжается неделями, месяцами и годами.

По тяжести градацию гипоксических состояний проводят по отдельным клиническим или лабораторным признакам, характеризующим нарушения той или иной физиологической системы или сдвиги параметров внутренней среды.

Защитно-приспособительные реакции при гипоксии

Экстренная адаптация.

Приспособительные реакции, направленные на предупреждение или устранение гипоксии и сохранение гомеостаза, возникают немедленно после начала воздействия этиологического фактора или вскоре после него. Эти реакции осуществляются на всех уровнях организма - от молекулярного до поведенческого и тесно связаны друг с другом.

Под влиянием гипоксического фактора у человека формируются специфические поведенческие акты различной сложности, направленные на выход из гипоксического состояния (например, выход из замкнутого пространства с малым содержанием кислорода, использование кислородных приборов, лекарств, ограничение физической активности, обращение за помощью и т. п.). В более простой форме подобные реакции наблюдаются и у животных.

Первостепенное значение в непосредственной экстренной адаптации организма к гипоксии имеет активация систем транспорта кислорода.

Система внешнего дыхания реагирует увеличением альвеолярной вентиляции за счет углубления и учащения дыхательных экскурсий и мобилизации резервных альвеол с одновременным адекватным увеличением легочного кровотока. В результате минутный объем вентиляции и перфузии может увеличиваться в 10-15 раз по сравнению со спокойным нормальным состоянием.

Реакции гемодинамической системы выражаются тахикардией, увеличением ударного и минутного объемов сердца, увеличением массы циркулирующей крови за счет опорожнения кровяных депо, а также перераспределением кровотока, направленным на преимущественное кровоснабжение мозга, сердца и усиленно работающих дыхательных мышц. Существенное значение имеют и регионарные сосудистые реакции, возникающие в результате непосредственного сосудорасширяющего действия продуктов распада АТФ (АДФ, АМФ, аденозина), которые закономерно накапливаются в испытывающих гипоксию тканях.

Приспособительные реакции системы крови прежде всего определяются свойствами гемоглобина, находящими выражение в S-образной кривой взаимоперехода его окси- и дезоксиформ в зависимости от Р O2 в плазме крови и тканевой среде, pH, Р CO2 и некоторых других физико-химических факторов. Это обеспечивает достаточное насыщение крови кислородом в легких даже при значительном его дефиците и более полное отщепление кислорода в испытывающих гипоксию тканях. Резервы кислорода в крови достаточно велики (в норме в венозной крови содержится до 60% оксигемоглобина), и кровь, проходя по капиллярам тканей, может отдать дополнительно значительные количества кислорода при умеренном уменьшении его фракции, растворенной в тканевой жидкости. Существенное значение может иметь также повышение кислородной емкости крови за счет усиленного вымывания эритроцитов из костного мозга.

Приспособительные механизмы на уровне систем утилизации кислорода проявляются в ограничении функциональной активности органов и тканей, непосредственно не участвующих в обеспечении биологического окисления, и тем самым повышается их устойчивость к гипоксии, а также увеличивается сопряженность окисления и фосфорилирования, усиливается анаэробный синтез АТФ за счет активации гликолиза.

Важное значение для метаболического обеспечения приспособительных реакций имеет возникающая при гипоксии общая неспецифическая реакция напряжения - «стресс». Активизация симпатико-адреналовой системы и коры надпочечников способствует мобилизации энергетических субстратов - глюкозы, жирных кислот, стабилизации мембран лизосом и других биомембран, активации некоторых ферментов дыхательной цепи и другим метаболическим эффектам приспособительного характера. Следует, однако, иметь в виду двойственность некоторых компонентов стресс-реакции. В частности, значительный избыток катехоламинов может увеличить потребность тканей в кислороде, усилить перекисное окисление липидов, вызвать дополнительное повреждение биомембран и т.д. В связи с этим приспособительная стресс-реакция при гипоксии может фактически иметь прямо противоположный результат (как это вообще нередко имеет место в патологии).

Долговременная адаптация.

Повторяющаяся гипоксия умеренной интенсивности способствует формированию состояния долговременной адаптации организма к гипоксии, в основе которой лежит повышение возможностей и оптимизация функций систем транспорта и утилизации кислорода.

Состояние долговременной адаптации к гипоксии характеризуется рядом метаболических, морфологических и функциональных особенностей.

Обмен веществ.

В адаптированном организме снижены основной обмен и потребность организма в кислороде за счет более экономного и эффективного его использования в тканях. Это может быть обусловлено увеличением числа митохондрий и их крист, повышением активности некоторых ферментов биологического окисления, возрастанием мощности и мобилизуем ости анаэробного синтеза АТФ. Повышенная активность — зависимой и Са 2+ -зависимой АТФазы способствует более полной утилизации АТФ. В органах, участвующих в адаптивных реакциях, происходит избирательная активизация синтеза нуклеиновых кислот и белков.

Дыхательная система.

Увеличивается емкость грудной клетки и мощность дыхательной мускулатуры, в легких возрастает число альвеол и общая дыхательная поверхность, увеличивается также число капилляров, возрастает диффузионная способность альвеолокапиллярных мембран. Более совершенной становится корреляция между легочной вентиляцией и перфузией.

Сердечно-сосудистая система.

Обычно развивается умеренная гипертрофия миокарда, сопровождающаяся увеличением числа функционирующих капилляров на единицу массы миокарда, В кардиомиоцитах увеличивается количество митохондрий и содержание белков, обеспечивающих транспорт субстратов; возрастает содержание миоглобина.

Система крови.

В адаптированном организме происходит стойкое усиление эритропоэза: содержание эритроцитов в периферической крови может возрастать до 6 -7 млн в 1 мкл, а содержание гемоглобина до 170-180 г/л и более. Соответственно увеличивается и кислородная емкость крови. Стимуляция эритропоэза и синтеза гемоглобина обусловлена усиленной выработкой в почках эритропоэтина под влиянием гипоксического сигнала, а на более поздних стадиях, возможно. и возрастанием чувствительности костномозгового кроветворения к действию эритропоэтина.

Нервная и эндокринная системы.

У адаптированных к гипоксии животных и человека наблюдается повышенная устойчивость нейронов высших отделов мозга и их связей к дефициту кислорода и энергии, а также гипертрофия ганглионарных нейронов вегетативной нервной системы и увеличение плотности их окончаний в сердце и некоторых других органах, более мощная и устойчивая к гипоксии система синтеза медиаторов. В научной литературе имеются данные об увеличении числа рецепторов на клеточных мембранах и соответственно повышении чувствительности к медиаторам. В результате указанных приспособительных механизмов обеспечивается лучшая и более экономная регуляция органов и ее устойчивость даже при тяжелой гипоксии.

Аналогичная по характеру перестройка происходит в эндокринной регуляции, в частности в гипофизарно-надпочечниковой системе.

Нарушения в организме при гипоксии

Характер, последовательность и выраженность метаболических, функциональных и структурных нарушений при гипоксии зависят от ее типа, этиологического фактора, скорости развития, степени, продолжительности, свойств организма. Вместе с тем гипоксии свойственна определенная совокупность наиболее существенных признаков, закономерно возникающих при самых различных ее вариантах. Далее будут рассмотрены наиболее общие типичные для гипоксии нарушения.

Нарушения метаболизма.

Наиболее ранние изменения возникают в сфере энергетического и тесно связанного с ним углеводного обмена. Они выражаются в уменьшении содержания в клетках АТФ при одновременном увеличении концентрации продуктов его распада - АДФ, АМФ, Ф н.

В некоторых тканях (особенно в головном мозге) еще более ранним признаком гипоксии является уменьшение содержания креатинфосфата. Так, после полного прекращения кровоснабжения мозговая ткань уже через несколько секунд теряет около 70 % креатинфосфата, а через 40-45 с он практически полностью исчезает; несколько медленнее, но также в очень короткие сроки снижается содержание АТФ. Возникающая вследствие указанных сдвигов активизация гликолиза приводит к падению содержания гликогена и увеличению концентрации пирувата и лактата. Последнему процессу способствует также замедленное включение пирувата и лактата в дальнейшие превращения в дыхательной цепи и затруднение ресинтеза гликогена, идущего с потреблением АТФ. Избыток молочной и пировиноградной кислот приводит к метаболическому ацидозу.

Замедляется биосинтез нуклеиновых кислот и белков наряду с усилением их распада, возникает отрицательный азотистый баланс, в тканях возрастает содержание аммиака.

При гипоксии угнетается ресинтез жиров и усиливается их распад, в результате развивается гиперкетонемия, способствующая усугублению ацидоза; с мочой выделяются ацетон, ацетоуксусная и β-оксимасляная кислоты.

Нарушается обмен электролитов и в первую очередь процессы активного перемещения и распределения ионов на биологических мембранах; возрастает, в частности, количество внеклеточного калия. Нарушаются процессы синтеза и ферментативного разрушения нейромедиаторов, их взаимодействие с рецепторами и ряд других энергозависимых метаболических процессов.

Возникают также вторичные нарушения обмена веществ, связанные с ацидозом, электролитными, гормональными и другими сдвигами, свойственными гипоксии. При дальнейшем ее углублении угнетается и гликолиз, усиливаются процессы деструкции и распада макромолекул, биологических мембран, клеточных органелл и клеток. Большое значение в повреждении мембран и повышении их пассивной проницаемости имеет свободнорадикальное окисление липидных компонентов, по-видимому, возникающее при гипоксии любого происхождения. Количество свободных радикалов при этом может возрастать примерно на 50%.

В основе усиления свободнорадикальных процессов при гипоксии лежит ряд механизмов: увеличение содержания субстрата перекисного окист ления липидов - неэтерифицированных жирных кислот, накопление в результате стрессорной реакции катехоламинов, обладающих прооксидантным действием, нарушение утилизации кислорода в процессе ферментативного окисления и др. Важное значение имеет одновременное снижение активности некоторых естественных антиоксидантов, в частности супероксиддисмутазы и глютатионпероксидазы.

Большинство метаболических и структурных нарушений до определенного предела носит обратимый характер. Однако при переходе за точку обратимости после прекращения действия гипоксического фактора происходит не обратное развитие, а прогрессирование тесно связанных друг с другом метаболических и мембранно-клеточных нарушений, вплоть до некроза клеток и их аутолиза.

Нарушения нервной системы.

Раньше всего страдает высшая нервная деятельность. Субъективно уже на ранних стадиях гипоксии возникают ощущения дискомфорта, вялость, тяжесть в голове, шум в ушах, головная боль. В некоторых случаях субъективные ощущения начинаются эйфорией, напоминающей алкогольное опьянение и сопровождающейся снижением способности адекватно оценивать окружающую обстановку и потерей самокритики. Возникают затруднения в осуществлении сложных логических операций, в принятии правильных решений. В дальнейшем прогрессивно нарушается способность выполнять все более простые задания вплоть до самых элементарных. По мере дальнейшего углубления гипоксии обычно нарастают тягостные ощущения, притупляется болевая чувствительность, возникают нарушения вегетативных функций.

Ранним признаком гипоксии является расстройство двигательных актов, требующих точной координации, в частности изменения почерка. В связи с этим так называемая писчая проба нередко используется при исследовании гипоксических состояний, например, в авиационной медицине. В заключительной стадии гипоксии сознание утрачено, возникает полная адинамия, которой нередко предшествуют судороги, развиваются грубые расстройства бульбарных функций и наступает смерть от прекращения сердечной деятельности и дыхания.

Современная реаниматология позволяет восстановить жизнедеятельность организма после 5 - 6 мин и более клинической смерти; однако высшие функции мозга могут при этом необратимо нарушаться, что определяет в таких случаях социальную неполноценность личности и накладывает определенные деонтологические ограничения на целесообразность реанимационных мероприятий.

Нарушения дыхания.

В типичных случаях острой нарастающей гипоксии наблюдаются несколько последовательных стадий изменения внешнего дыхания:

  1. стадия активации , выражающаяся в увеличении глубины и частоты дыхательных движений;
  2. диспноэтическая стадия , проявляющаяся нарушениями ритма и неравномерностью амплитуд дыхательных экскурсий; нередко в этой стадии наблюдаются так называемые патологические типы дыхания;
  3. терминальная пауза в виде временной остановки дыхания;
  4. терминальное (агональное) дыхание;
  5. полное прекращение дыхания.

Нарушения сердечно-сосудистой системы вначале обычно выражаются в тахикардии, нарастающей параллельно с ослаблением сократительной деятельности сердца и уменьшением ударного объема вплоть до так называемого нитевидного пульса. В других случаях тахикардия сменяется резкой брадикардией («вагус-пульс»), сопровождающейся побледнением лица, похолоданием конечностей, холодным потом и обморочным состоянием. Часто наблюдаются изменения ЭКГ и развиваются расстройства сердечного ритма вплоть до фибрилляции предсердий и желудочков. Артериальное давление вначале имеет тенденцию к повышению, а затем прогрессивно снижается в результате падения сердечного выброса и тонуса сосудистых стенок, вплоть до развития коллапса.

Большое значение имеют также расстройства микроциркуляции, связанные с гипоксической альтерацией мельчайших сосудов, изменениями периваскулярных пространств и ухудшением реологических свойств крови.

Функция почек претерпевает при гипоксии сложные и неоднозначные изменения - от полиурии до полного прекращения образования мочи. Изменяется и качественный состав мочи. Эти изменения связаны с нарушением общей и локальной гемодинамики, гормональными влияниями на почки, сдвигами кислотно-основного и электролитного баланса и другими метаболическими расстройствами. При значительной гипоксической альтерации почек развивается недостаточность их функции вплоть до уремии.

Нарушения в системе пищеварения характеризуются потерей аппетита, ослаблением секреторной функции всех пищеварительных желез и моторной функции пищеварительного тракта.

Приведенные выше расстройства физиологических функций характерны в основном для остро- и подостро-развивающихся форм гипоксии. При так называемой молниеносной гипоксии, наступающей, например, при вдыхании различных газов (азот, метан, гелий), при полном отсутствии кислорода, вдыхании высоких концентраций синильной кислоты, фибрилляции или остановке сердца, большая часть описанных изменений отсутствует, очень быстро происходит потеря сознания и прекращение жизненно важных функций организма.

Гипоксия может оказывать влияние на состояние иммунной системы. Умеренная по выраженности и длительности гипоксия практически не изменяет процесса иммуногенеза или несколько активизирует его.

Так, устойчивость к инфекции при невысоких степенях разрежения воздуха может даже возрастать.

Острая и тяжелая гипоксия подавляет иммунную реактивность организма. При этом снижается содержание иммуноглобулинов, тормозится выработка антител и способность лимфоцитов трансформироваться в бластные формы, ослабляется функциональная активность Т-лимфоцитов, фагоцитарная активность нейтрофилов и макрофагов. Снижается также ряд показателей неспецифической резистентности: лизоцима, комплемента, β-лизинов. В итоге резистентность ко многим инфекционным агентам ослабевает.

Снижение иммунитета к чужеродным антигенам в условиях гипоксии может сопровождаться активизацией образования аутоантител в отношении различных органов и тканей, подвергшихся гипоксической альтерации. Возможно также нарушение барьеров, обеспечивающих в норме естественную иммунную толерантность с последующим поражением соответствующих органов и тканей (семенников, щитовидной железы и др.).

Некоторые принципы профилактики и терапии гипоксических состояний

Профилактика и лечение гипоксии зависят от вызвавшей ее причины и должны быть направлены на ее устранение или ослабление. В качестве общих мер применяют вспомогательное или искусственное дыхание, кислород под нормальным или повышенным давлением, электроимпульсную терапию нарушений сердечной деятельности, переливание крови, фармакологические средства. В последнее время получают распространение так называемые антиоксиданты - средства, направленные на подавление свободно-радикального окисления мембранных липидов, играющего существенную роль в гипоксическом повреждении тканей, и антигипоксанты, оказывающие непосредственное благоприятное действие на процессы биологического окисления.

Устойчивость к гипоксии может быть повышена специальными тренировками для работы в условиях высокогорья, в замкнутых помещениях и других специальных условиях.

В настоящее время получены данные о перспективности использования для профилактики и терапии различных заболеваний, содержащих гипоксический компонент, тренировку дозированной гипоксией по определенным схемам и выработку долговременной адаптации к ней.

Контрольные вопросы

  1. Что такое гипоксия?
  2. Как классифицируют гипоксии по причине и механизму развития, скорости развития, распространенности?
  3. Назовите причины развития экзогенных гипоксии.
  4. Каковы причины развития гемической гипоксии?
  5. Перечислите причины дыхательной гипоксии.
  6. Какие причины вызывают циркуляторную гипоксию?
  7. Назовите причины цитотоксической гипоксии.
  8. Какие срочные механизмы компенсации гипоксии вам известны?
  9. Какие долговременные механизмы компенсации гипоксии вы знаете?

© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции