18.07.2019

Виды гипоксии патофизиология. Гипоксия. патофизиология внешнего дыхания. Характеристика гипоксических состояний по различным критериям


Во внутренней среде человека и высших животных в естественных условиях содержится кислород, углекислый газ, азот и ничтожно малое количество инертных газов. Физиологически значимыми являются О 2 и СО 2 , находящиеся в организме в растворенном и биохимически связанном состоянии. Именно эти два газа и определяют газовый гомеостаз организма. Содержание О 2 и СО 2 является важнейшими регулируемыми параметрами газового состава внутренней среды.

Постоянство газового состава само по себе не имело бы для организма никакого смысла, если бы оно не обеспечивало изменяющиеся потребности клеток в доставке О 2 и удалении СО 2 . Организму требуется не постоянный газовый состав крови, ликвора, интерстициальной жидкости, а обеспечение нормального тканевого дыхания во всех клетках и органах. Это положение справедливо для любого гомеостатического механизма и гомеостаза организма в целом.

О 2 поступает в организм из воздуха, СО 2 образуется в клетках в организме в результате биологического окисления (основная масса - в цикле Кребса) и выделяется через легкие в атмосферу. Это встречное перемещение газов проходит через различные среды организма. Содержание их в клетках определяется, прежде всего, интенсивностью окислительных процессов. Уровень активности различных органов и тканей в процессе приспособительной деятельности непрерывно меняется. Соответственно происходят локальные изменения концентрации О 2 и СО 2 в клетках. При особенно напряженной деятельности, когда фактическая доставка О 2 к клеткам отстает от кислородного запроса, может возникать кислородная задолженность.

16.1.1. Механизмы регуляции газового состава

16.1.1.1. Локальный механизм

Основан на гомеостатических свойствах гемоглобина. Они осуществляются, во-первых, благодаря наличию аллостерических взаимодействий О 2 с белковыми субъединицами молекулы гемоглобина, во-вторых, благодаря наличию в мышцах миоглобина (Рис. 33).

S-образная кривая насыщения гемоглобина кислородом обеспечивает быстрое нарастание диссоциации (распада) комплекса НbO 2 при падении давления О 2 от сердца к тканям. Повышение температуры и ацидоз ускоряет распад комплекса НbО 2 , т.е. О 2 уходит в ткани. Снижение температуры (гипотермия) делает этот комплекс более стабильным и О 2 труднее уходит в ткани (одна из возможных причин гипоксии при гипотермии).

Сердечная мышца и скелетная мускулатура обладают еще одним "местным" гомеостатическим механизмом. В момент сокращения мышц кровь выталкивается из сосудов, вследствни чего О 2 не успевает диффундировать из сосудов в миофибриллы. Этот неблагоприятный фактор в значительной мере компенсируется содержащимся в миофибриллах миоглобином, запасающим О 2 непосредственно в тканях. Сродство миоглобина к О 2 больше чем у гемоглобина. Так, например, миоглобин насыщается О 2 на 95% даже из капиллярной крови, в то время как для гемоглобина при этих величинах рО 2 уже развивается выраженная диссоциация. Наряду с этим, при дальнейшем снижении рО 2 миоглобин очень быстро отдаст почти весь запасенный О 2 . Таким образом, миоглобин выполняет функцию демпфера резких перепадов кислородного снабжения работающих мышц.

Однако локальные механизмы газового гомеостаза лишены способности к сколько-нибудь длительной самостоятельной деятельности и могут осуществлять свои функции лишь на основе общих механизмов гомеостаза. Именно кровь служит той универсальной средой, из которой клетки черпают О 2 и куда отдают конечный продукт окислительного метаболизма - СО 2 .

Соответственно, организм располагает разнообразными и мощными системами гомеостатической регуляции, обеспечивающими сохранение физиологических пределов колебаний газовых показателей крови в норме и возвращение этих показателей в физиологические границы после их временного отклонения под влиянием патологических воздействий.

16.1.1.2. Общий механизм регуляции газового состава крови

Структурные основы.

  1. В конечном итоге узловым механизмом является внешнее дыхание, регулируемое дыхательным центром.
  2. Другой ключевой структурный момент - роль мембран в газовом гомеостазе. На уровне альвеолярных мембран происходят начальные и завершающие процессы газообмена организма с внешней средой, позволяющие функционировать всем остальным звеньям газового гомеостаза.

В состоянии покоя в организм поступает около 200 мл О 2 в минуту н выделяется примерно такое же количество СО 2 . В условиях напряженной деятельности (например, при компенсации кровопотери) количество поступающего О 2 и выделяющегося СО 2 может увеличиваться в 10-15 раз, т.е. система внешнего дыхания рсполагает огромным потенциальным резервом, являющимся решающим компонентом ее гомеостатической функции.

16.1.1.3. Регуляция минутного объема дыхания

Важнейшим регулируемым процессом, от которого зависит постоянство состава альвеолярного воздуха, является минутный объем дыхания (МОД), определяемый экскурсией грудной клетки и диафрагмы.

МОД=частота дыхательных движений х (дыхательный объем - объем мертвого пространства трахеи и крупных бронхов). Приблизительно в норме МОД=16 х (500 мл - 140 мл) = 6 л.

Характер и интенсивность дыхательных движений зависит от деятельности основного управляющего звена системы регуляции внешнего дыхания - дыхательного центра. В нормальных условиях СО 2 и О 2 являются безусловно доминирующими критериями в системе регуляции дыхания. Различного рода "негазовые" влияния (температура, боль, эмоции) могут осуществляться при условии сохранения регулирующего влияния СО 2 и О 2 (Рис. 34).

16.1.1.4. Регуляция по СO 2

Важнейшим регулятором внешнего дыхания, носителем специфического возбуждающего эффекта на дыхательный центр является СО 2 . Таким образом, регуляция по СО 2 связана с его непосредственным влиянием на дыхательный центр.

Кроме непосредственного влияния на центр продолговатого мозга (1), бесспорно возбуждение дыхательного центра под влиянием импульсов с периферических рецепторов сино-каротидной (2а) и кардио-аортальмой зон (2б), возбуждаемых СО 2 .

16.1.1.5. Регуляция по О 2

Происходит преимущественно рефлекторное возбуждение дыхательного центра со стороны хеморецепторов сино-каротидной зоны при снижении рО 2 крови. Исключительно высокая чувствительность рецепторов этих структур к О 2 объясняется высокой скоростью окислительных процессов. Ткань клубочка потребляет 1 мл О 2 /мин на грамм сухой ткани, что в несколько раз больше подобной величины для ткани головного мозга.

16.2. Патология дыхания

Любые нарушения рО 2 и рСО 2 крови приводят к изменениям активности дыхательного центра, регуляции механизма обеспечение газового гомеостаза.

16.2.1. Нарушения газового гомеостаза

Изменения содержания рO 2 , рСО 2 вызваны: 16.2.1.1. За счет нарушения аппарата внешнего дыхания (обеспечение насыщения кропи кислородом и удаления СO 2). Примерами могут быть: накопление экссудата в легких, болезни дыхательных мышц, "аденоидная маска" у детей, дифтеритический и ложный крупы. 16.2.1.2. За счет нарушения аппарата внутреннего дыхания (транспорт и использовании O 2 , СO 2). Причины и патогенез этих патологических состояний достаточно хорошо изложены в учебнике по патофизиологии А.Д.Адо и соавторов, И.H.Зайко и соавторов, поэтому более подробно остановимся на следствиях нарушения как аппарата внешнего, так и внутреннего дыхания - кислородном голодании, т.е. гипоксии. 16.2.1.3. Итак, кислородное голодание тканей (гипоксия) - состояние, возникающее при нарушении доставки или потребления O 2 . Крайнее выражение гипоксии - аноксия (отсутствие О 2 в крови и тканях).

16.2.1.4. Классификация гипоксий

Чтобы сознательно решить для себя эту проблему, следует помнить, что основным условием неравновесия как признака жизни, является энергообеспечение. Вдыхаемый нами кислород нужен для окислительных процессов, главный из которых - образование АТФ в дыхательной цепи. Роль кислорода в ней - снимать электроны с последнего из цепи цитохромов, т.е. быть акцептором. В сопряженном с этим процессом акте фосфорилирования и возникает АТФ в митохондриях аэробов.

В настоящее время выделяется 5 патогенетических типов гипоксий. Их легко запомнить, проследив путь движения кислорода из атмосферы до дыхательной цепи (Рис. 35).

  • 1-й блок поступления кислорода - результат уменьшения его во вдыхаемом воздухе. Этот вид гипоксии активно изучал на себе выдающийся отечественный патофизиолог Н.Н.Сиротинин, поднимаясь в барокамере на высоту около 8500 м. У него возникали синюшность, потоотделение, подергивание конечностей, потеря сознания. Им установлено, что потеря сознания является наиболее надежным критерием для установления высотной болезни.
  • 2-й блок - возникает при заболеваниях внешнего аппарата дыхания (заболевания легких и дыхательного центра), поэтому носит название дыхательной гипоксии.
  • 3-й блок - возникает при заболеваниях сердечно-сосудистой системы, что ухудшает транспорт кислорода и носит название сердечно-сосудистой (циркуляторной) гипоксии.
  • 4-й блок - возникает при любых повреждениях транспортной системы кислорода крови - эритроцитов - и носит название кровяной (гемической) гипоксии. Все четыре вида блоков ведут к гипоксемии (снижению рО 2 в крови).
  • 5-й блок - возникает при повреждениях дыхательной цепи, например, мышьяком, цианидами без явления гипоксемии.
  • 6-й блок - смешанная гипоксия (например, при гиповолемическом шоке).

16.2.1.5. Острая и хроническая гипоксии

Все виды гипоксии, в свою очередь, делятся на острые и хронические. Острые возникают чрезвычайно быстро (например, при 3-м блоке - обильная кровопотеря, при 4-м - отравление СО, при 5-м - отравление цианидами).

Полное отсутствие кислорода - аноксия - возникает при состоянии удушья, так называемой асфиксии. В педиатрии известна асфиксия новорожденных. Причиной является угнетение дыхательного центра или аспирация околоплодных вод. В стоматологии асфиксия возможна при травмах н заболеваниях челюстно-лицевой области и может носить характер аспирационной (затек в дыхательное дерево крови, слизи, рвотных масс), обтурационная (закупорка бронха, трахеи инородными телами, осколками костей, зубов), дислокационной (смещение поврежденных тканей).

Следствием асфиксии является гибель наиболее чувствительных тканей. Из всех функциональных систем к действию гипоксии наиболее чувствительна кора больших полушарий головного мозга. Причины высокой чувствительности: кора образована в основном телами нейронов, богатых тельцами Ниссля - рибосомами, на которых с исключительной интенсивностью идет биосинтез белка (вспомните процессы долговременной памяти, аксональный транспорт). Так как этот процесс является исключительно энергоемким, он нуждается в значительных количествах АТФ, и не удивительно, что потребление кислорода и чувствительность к его нехватке у коры больших полушарий чрезвычайно высока.

Второй особенностью коры является в основном аэробный путь образования АТФ. Гликолиз - бескислородный путь образования АТФ - в коре выражен крайне слабо и не в состоянии компенсировать недостаток АТФ в условиях гипоксии.

16.2.1.6. Полное и неполное выключение коры головного мозга при острой гипоксии

При гипоксии возможна неполная локальная гибель корковых нейронов, либо полное выключение коры больших полушарий. Полное возникает в клинических условиях при остановке сердца более чем на 5 минут. Например, во время хирургических манипуляций, проведении реанимационных мероприятий при состоянии клинической смерти. При этом личность необратимо утрачивает способность увязывать поведение с законами общества, т.е. теряется социальная детерминированность (потеря способности адаптации к окружающим условиям, непроизвольное мочеиспускание и дефекация, потеря речи и т.д.). Через некоторое время такие больные погибают. Таким образом, полное выключение коры больших полушарий сопровождается необратимой потерей условных рефлексов у животных и общественных, коммуникативных функций у человека.

При частичном выключении коры больших полушарий, например, в результате локальной гипоксии при тромбозе сосудов или кровоизлиянии в мозг, теряется функция коркового анализатора в месте аноксии, но, в отличие от полного выключения, в данном случае возможно восстановление утерянной функции за счет периферической части анализатора.

16.2.1.7. Хроническая гипоксии

Хроническая гипоксия возникает при длительном нахождении под влиянием пониженного атмосферного давления и, соответственно, недостатка потребления кислорода, при нарушении дыхательной и сердечно-сосудистой деятельности. Симптоматика хронической гипоксии обусловлена низкой скоростью протекания биохимических и физиологических процессов вследствие нарушения образования макроэрга АТФ. Дефицит АТФ лежит в основе развития симптомов хронической гипоксии. В стоматологии примером может быть развитие пародонтоза при микроангиопатии.


16.2.1.8. Клеточные механизмы патологического действия гипоксии

На основании рассмотренного материала мы можем сделать 1-й вывод: гипоксия любой этиологии сопровождается дефицитом АТФ. Патогенетическим звеном является отсутствие кислорода, который снимает электроны с дыхательной цепи.

Вначале при гипоксии происходит восстановление электронами всех цитохромов дыхательной цепи и перестает генерироваться АТФ. При этом происходит компенсаторное переключение углеводного обмена на анаэробное окисление. Недостаток АТФ снимает его ингибирующее влияние на фосфофруктокиназу - фермент начала гликолиза, усиливается липолиз и глюконеогенсз от пирувата, образующегося из аминокислот. Но это менее эффективный путь образования АТФ. Кроме того, в результате неполного окисления глюкозы по этому пути образуется молочная кислота - лактат. Накопление лактата приводит к внутриклеточному ацидозу.

Отсюда 2-й принципиальный вывод: гипоксия любой этиологии сопровождается ацидозом. Весь дальнейший ход событий, ведущий к гибели клетки, связан с 3-м фактором - повреждением биомембран. Рассмотрим это наиболее подробно на примере мембран митохондрий.

Тканевая гипоксия и повреждение биомембран (БМ)

Тканевая гипоксия - до некоторой степени нормальное состояние для интенсивно функционирующей ткани. Однако, если гипоксия продолжается десятки минут, то она вызывает повреждения клетки, обратимые только на ранних этапах. Природа точки "необратимости" - проблема общей патологии - лежит на уровне биомембран клетки.


Основные этапы повреждения клетки

  1. Дефицит АТФ и накопление Са 2+ . Начальный период гипоксии прежде всего приводит к повреждению "энергетических машин" клетки - митохондрий (MX). Снижение доступа кислорода приводит к снижению образования АТФ в дыхательной цепи. Важным следствием дефицита АТФ является неспособность таких MX накапливать Са 2+ (откачивать из цитоплазмы)
  2. Накопление Са 2+ и активация фосфолипаз. Для нашей проблемы важно то, что Ca 2+ активирует фосфолипазы, вызывающие гидролиз фосфолипидного слоя. Мембраны постоянно испытывают действие разностей потенциалов: от 70 мв на плазматической мембране до 200мв на MX. Такую разность потенциалов может выдержать только очень прочный изолятор. Фосфолипидный слой биомембран (БМ) и есть природный изолятор.
  3. Активация фосфолипаз - дефекты в БМ - электрический пробой. Даже небольшие дефекты в таком изоляторе будут вызывать явление электрического пробоя (быстрое увеличение электрического тока через мембраны, приводящие к их механическому разрушению). Фосфолипазы, разрушая фосфолипиды, и вызывают такие дефекты. Важно, что БМ могут быть пробиты электрическим током под воздействием потенциала, генерируемого самой БМ или электротоком, приложенным извне.
  4. Электрический пробой - нарушение барьерной функции биомембраны. БМ становятся проницаемыми для ионов. Для MX это - К + , которого много в цитоплазме. Для плазматической мембраны - это натрий в экстрацеллюлярном пространстве.

    Итог: ионы калия и натрия движутся внутрь MX или клетки, приводя к повышению осмотического давления. За ними "хлынут" потоки воды, что приведет к отеку MX и отеку клетки. Такие раздувшиеся MX не могут генерировать АТФ и клетки погибают.

Вывод. Гипоксия любой этиологии сопровождается триадой: дефицитом АТФ, ацидозом и повреждением биомембран. Отсюда терапия гипоксических состояний должна включить ингибиторы фосфолипаз, например, витамин Е.

16.2.1.9. Гомеостатические механизмы при гипоксии

Базируются на основе рассмотренных выше гомеостатических механизмов поддерживания газового состава крови. Вернемся к Рис. 35.

  1. Реакция аппарата внешнего дыхания проявляется в виде одышки. Одышка - это изменение ритма и глубины дыхания при гипоксии. В зависимости от длительности вдоха и выдоха различают экспираторную и инспираторную одышку.

    Экспираторная - характеризуется удлинением фазы выдоха вследствие недостаточности эластической силы тканей легких. В норме активация выдоха происходит за счет этих сил. При возрастании сопротивления воздушному потоку за счет спазма бронхиол эластической силы легких недостаточно и подключаются межреберные мышцы, диафрагма.

    Инспираторная - характеризуется удлинением фазы вдоха. Примером может быть стенотическое дыхание вследствие сужения просвета трахеи и верхних дыхательных путей при отеке гортани, дифтерии, попадании инородных тел.

    Но позволительно задать вопрос: всякая ли одышка является компенсаторной? Вспомним, что одним из показателей эффективности дыхания является МОД. В формулу его определения входит понятие "объем мертвого пространства" (см. 16.1.1.3.). Если одышка будет частой и поверхностной (тахипноэ), то это приведет к снижению дыхательного объема при сохранении объема мертвого пространства и результатом поверхностного дыхания будет маятникообразное движение воздуха мертвого пространства. В таком случае, тахипноэ - это совсем не компенсация. Таковой можно считать только частое и глубокое дыхание.

  2. Вторым гомеостатическим механизмом является усиление транспорта кислорода, возможное за счет увеличения скорости кровотока, т.е. белее частых и сильных сокращений сердца. Ориентировочно нормальный минутный объем сердца (МОС) равен ударному объему, умноженному на частоту сердечных сокращений, т.е. МОС = 100 х 60 = 6 л. При тахикардии МОС = 100 х 100 = 10 л. Но в случае продолжающейся гипоксии, приводящей к дефициту энергии, долго ли сможет работать этот компенсаторный механизм? Нет, несмотря на довольно мощную систему гликолиза в миокарде.
  3. Третьим гомеостатическим механизмом является усиление эритропоэза, что ведет к увеличению содержания Нb в крови и повышению транспорта кислорода. При острой гипоксии (кровопотеря) увеличение количества эритроцитов осуществляется за счет выброса их из депо. При хронической гипоксии (нахождение в горах, длительные заболевания сердечно-сосудистой системы) повышается концентрация эритропоэтина, усиливается кроветворная функция костного мозга. Поэтому альпинисты проходят период акклиматизации перед штурмом горных вершин. Н.Н.Сиротинин после стимуляции гемопоэза (сок лимона + 200г сахарного сиропа + аскорбинка) "поднялся" в барокамере до высоты 9750 м.

    Другой интересный пример разнообразия фенотипических приспособлений организма к неблагоприятным условиям внешней среды привел отечественный ученый Чижевский. Он заинтересовался, почему у горных баранов такие мощные (до 7 кг) рога, носить которые достаточно тяжело высоко в горах. Ранее предполагалось, что бараны амортизируют рогами удар о землю при прыжке через пропасть. Чижевским было обнаружено, что в рогах баранов размещены дополнительные резервуары для костного мозга.

  4. Если все предыдущие гомеостатические механизмы были направлены на доставку кислорода, то последний, 4-й механизм - на уровне тканей, направлен прямо на устранение дефицита АТФ. Включение компенсаторных механизмов (ферментов липолиза, гликолиза, переаминирования, глюконеогенеза) в этом случае обусловлено воздействием более высокого уровня регуляции гемопоэза - эндокринной системой. Гипоксия - неспецифичсский стрессор, на который организм отвечает стимуляцией САС и стресс-реакцией системы гипоталамус - гипофиз - кора надпочечников, включающей дополнительные пути энергообеспечения: липолиз, глюконеогенез.

Страница 35 из 228

Гипоксия нагрузки возникает при напряженной мышечной активности (тяжелая физическая работа, судороги и др.). Она характеризуется значительным усилением утилизации кислорода скелетной мускулатурой, развитием выраженной венозной гипоксемии и гиперкапнии, накоплением недоокисленных продуктов распада, развитием умеренного метаболического ацидоза. При включении механизмов мобилизации резервов наступает полная или частичная нормализация кислородного баланса в организме за счет продукции вазодилататоров, расширения сосудов, увеличения объема кровотока, уменьшения размера межкапиллярных пространств и срока прохождения крови в капиллярах. Это приводит к уменьшению гетерогенности кровотока и выравниванию его в работающих органах и тканях.
Острая нормобарическая гипоксическая гипоксия развивается при уменьшении дыхательной поверхности легких (пневмоторакс, удаление части легкого), «коротком замыкании» (заполнение альвеол экссудатом, транссудатом, ухудшение условий диффузии), при снижении парциального напряжения кислорода во вдыхаемом воздухе до 45 мм рт.ст. и ниже, при чрезмерном открытии артериоловенулярных анастомозов (гипертензия малого круга кровообращения). Вначале развивается умеренный дисбаланс между доставкой кислорода и потребностью тканей в нем (снижение РС2 артериальной крови до 19 мм рт.ст.). Включаются нейроэндокринные механизмы мобилизации резервов. Снижение РО2 в крови вызывает тотальное возбуждение хеморецепторов, через посредство которых стимулируются ретикулярная формация, симпатико-адреналовая система, в крови увеличивается содержание катехоламинов (в 20-50 раз) и инсулина. Возрастание симпатических влияний ведет к увеличению ОЦК, повышению насосной функции сердца, скорости и объема кровотока, артериовенозной разницы по кислороду на фоне вазоконстрикции и гипертензии, углубления и учащения дыхания. Интенсификация утилизации в тканях норадреналина, адреналина, инсулина, вазопрессина и других биологически активных веществ, усиленное образование медиаторов клеточных экстремальных состояний (диацилглицерид, инозитол-трифосфат, простагландин, тромбоксан, лейкотриен и др.) способствуют дополнительной активации обмена веществ в клетках, что ведет к изменению концентрации субстратов обмена и коферментов, увеличению активности окислительно-восстановительных ферментов (альдолаза, пируваткиназа, сукциндегидрогеназа) и снижению активности гексокиназы. Возникающая недостаточность энергетического обеспечения за счет глюкозы замещается усилением липолиза, возрастанием концентрации жирных кислот в крови. Высокая концентрация жирных кислот, ингибируя усвоение клетками глюкозы, обеспечивает высокий уровень глюконеогенеза, развитие гипергликемии. Одновременно активируются гликолитическое расщепление углеводов, пентозный цикл, катаболизм белков с высвобождением глюкогенных аминокислот. Однако чрезмерная утилизация АТФ в обменных процессах не восполняется. Это сочетается с накоплением в клетках АДФ, АМФ и других адениловых соединений, что ведет к недостаточной утилизации лактата, кетоновых тел, образующихся при активации расщепления жирных кислот в клетках печени, миокарда. Накопление кетоновых тел способствует возникновению вне- и внутриклеточного ацидоза, дефициту окисленной формы НАД, угнетению активности Na+-К+- зависимой АТФазы, нарушению деятельности Na+/K+-нacoca и развитию отека клеток. Совокупность дефицита макроэргов, вне- и внутриклеточного ацидоза ведет к нарушению деятельности органов, обладающих высокой чувствительностью к дефициту кислорода (ЦНС, печень, почки, сердце и др.).
Ослабление сокращений сердца снижает величину ударного и минутного объема, повышает венозное давление и сосудистую проницаемость, особенно в сосудах малого круга кровообращения. Это ведет к развитию интерстициального отека и расстройствам микроциркуляции, уменьшению жизненной емкости легких, что еще более усугубляет нарушения деятельности ЦНС и благоприятствует переходу стадии компенсации в стадию декомпенсированной гипоксии. Стадия декомпенсации развивается при резко выраженном дисбалансе между доставкой кислорода и потребностью тканей в нем (снижение Р02 артериальной крови до 12 мм рт.ст. и ниже). В этих условиях отмечается не только недостаточность нейроэндокринных механизмов мобилизации, но и почти полное исчерпывание резервов. Так, в крови и тканях устанавливается стойкий дефицит КТА, глюкокортикоидов, вазопрессина и других биологически активных веществ, что ослабляет влияние регулирующих систем на органы и ткани и облегчает прогрессирующее развитие расстройств микроциркуляции, особенно в малом круге кровообращения с микроэмболией легочных сосудов. В то же время снижение чувствительности гладких мышц сосудов к симпатическим воздействиям ведет к угнетению сосудистых рефлексов, патологическому депонированию крови в системе микроциркуляции, чрезмерному раскрытию артериоловенулярных анастомозов, централизации кровообращения, потенцированию гипоксемии, дыхательной и сердечной недостаточности.
В основе указанной выше патологии лежит углубление нарушений окислительно-восстановительных процессов - развитие недостатка никотинамидных коферментов, преобладание их восстановленных форм, угнетение процессов гликолиза и генерации энергии. В тканях почти полностью отсутствует преобразованная АТФ, снижается активность супероксиддисмутазы и других ферментных компонентов антиоксидантной системы, резко активируется свободнорадикальное окисление, возрастает образование активных радикалов. В этих условиях происходит массивное образование токсичных перекисных соединений и ишемического токсина белковой природы. Развиваются тяжелые повреждения митохондрий в связи с нарушением метаболизма длинных цепей ацетил-КоА, тормозится транслокация адениннуклеотидов, увеличивается проницаемость внутренних мембран для Са2+. Активация эндогенных фосфолипаз ведет к усилению расщепления фосфолипидов мембран, происходит повреждение рибосом, подавление синтеза белков и ферментов, активация лизосомальных ферментов, развитие аутолитических процессов, дезорганизация молекулярной гетерогенности цитоплазмы, перераспределение электролитов. Подавляется активный энергозависимый транспорт ионов через мембраны, что ведет к необратимой потере внутриклеточного К+, ферментов и к гибели клеток.
Хроническая нормобарическая гипоксическая гипоксия развивается при постепенном уменьшении дыхательной поверхности легких (пневмосклероз, эмфизема), ухудшении условий диффузии (умеренный длительный дефицит содержания О2 во вдыхаемом воздухе), недостаточности сердечно-сосудистой системы. В начале развития хронической гипоксии обычно поддерживается легкий дисбаланс между доставкой кислорода и потребностью тканей в нем за счет включения нейроэндокринных механизмов мобилизации резервов. Небольшое снижение РО2 в крови ведет к умеренному повышению активности хеморецепторов симпатико-адреналовой системы. Концентрация катехоламинов в жидких средах и тканях сохраняется близкой к норме за счет более экономного их расходования в обменных процессах. Это сочетается с небольшим увеличением скорости кровотока в магистральных и резистивных сосудах, замедлением ее в нутритивных сосудах в результате возрастания капилляризации тканей и органов. Происходит увеличение отдачи и извлечения кислорода из крови. На этом фоне отмечаются умеренная стимуляция генетического аппарата клеток, активация синтеза нуклеиновых кислот и белков, увеличение биогенеза митохондрий и других клеточных структур, гипертрофия клеток. Увеличение концентрации дыхательных ферментов на кристах митохондрий усиливает способность клеток утилизировать кислород при понижении его концентрации во внеклеточной среде в результате повышения активности цитохромоксидаз, дегидраз цикла Кребса, увеличения степени сопряжения окисления и фосфорилирования. Достаточно высокий уровень синтеза АТФ поддерживается также за счет анаэробного гликолиза одновременно с активацией окисления, других энергетических субстратов - жирных кислот, пирувата и лактата и стимуляцией глюконеогенеза главным образом в печени и скелетной мускулатуре. В условиях умеренной тканевой гипоксии усиливается продукция эритропоэтина, стимулируются размножение и дифференцировка клеток эритроидного ряда, укорачиваются сроки созревания эритроцитов с повышенной гликолитической способностью, увеличивается выброс эритроцитов в кровоток, возникает полицитемии с возрастанием кислородной емкости крови.
Усугубление дисбаланса между доставкой и потреблением кислорода в тканях и органах в более поздний период индуцирует развитие недостаточности нейроэндокринных механизмов мобилизации резервов. Это связано со снижением возбудимости хеморецепторов, главным образом синокаротидной зоны, адаптацией их к пониженному содержанию кислорода в крови, угнетением активности симпатико-адреналовой системы, снижением концентраций КТА в жидких средах и тканях, развитием внутриклеточного дефицита КТА и содержания их в митохондриях, угнетением активности окислительно-восстановительных ферментов. В органах с высокой чувствительностью к недостатку О2 это ведет к развитию повреждений в виде дистрофических нарушений с характерными изменениями ядерно-цитоплазматических отношений, угнетением продукции белков и ферментов, вакуолизацией и другими изменениями. Активация в этих органах пролиферации соединительнотканных элементов и замещение ими погибших паренхиматозных клеток ведет, как правило, к развитию склеротических процессов из-за разрастания соединительной ткани.
Острая гипобарическая гипоксическая гипоксия возникает при быстром перепаде атмосферного давления - разгерметизации кабины самолета при высотных полетах, восхождении на высокие горы без проведения искусственной адаптации и др. Интенсивность патогенного действия гипоксии на организм находится в прямой зависимости от степени снижения атмосферного давления.
Умеренное снижение атмосферного давления (до 460 мм рт.ст., высота около 4 км над уровнем моря) снижает РО2 в артериальной крови до 50 мм рт.ст. и оксигенацию гемоглобина до 90 %. Возникает временный дефицит кислородного снабжения тканей, который ликвидируется в результате возбуждения ЦНС и включения нейроэндокринных механизмов мобилизации резервов - дыхательного, гемодинамического, тканевого, эритропоэтического, осуществляющих полноценную компенсацию потребности тканей в кислороде.
Значительное уменьшение атмосферного давления (до 300 мм рт.ст., высота 6-7 км над уровнем моря) ведет к снижению РО2 в артериальной крови до 40 мм рт.ст. и ниже и оксигенации гемоглобина менее 90 %. Развитие выраженного дефицита кислорода в организме сопровождается сильным возбуждением ЦНС, чрезмерной активацией нейроэндокринных механизмов мобилизации резервов, массивным выбросом кортикостероидных гормонов с преобладанием минералокортикоидного эффекта. Однако в процессе включения резервов создаются «порочные» круги в виде усиления и учащения дыхания, возрастания потери СО2 с выдыхаемым воздухом при резко пониженном атмосферном давлении. Развиваются гипокапния, алкалоз и прогрессирующее ослабление внешнего дыхания. Связанное с дефицитом кислорода угнетение окислительно-восстановительных процессов и продукции макроэргов замещается усилением анаэробного гликолиза, в результате которого развивается внутриклеточный ацидоз на фоне внеклеточного алкалоза. В этих условиях возникают прогрессирующее снижение тонуса гладкой мускулатуры сосудов, гипотония, увеличивается проницаемость сосудов, уменьшается общее периферическое сопротивление. Это вызывает задержку жидкости, периферический отек, олигурию, расширение сосудов мозга, усиление кровотока и развития отека мозга, которые сопровождаются головной болью, дискоординацией движений, бессонницей, тошнотой, а на стадии тяжелой декомпенсации - потерей сознания.
Синдром высотной декомпрессии возникает при дегерметизации кабин летательных аппаратов при полетах, когда атмосферное давление составляет 50 мм рт.ст. и менее при высоте 20 км и более над уровнем моря. Дегерметизация ведет к быстрой утрате газов организмом и уже при достижении их напряжения 50 мм рт.ст. возникает закипание жидких сред, так как при таком низком парциальном давлении точка кипения воды составляет 37 °С. Через 1,5-3 мин после начала кипения развивается генерализованная воздушная эмболия сосудов и блокада кровотока. Спустя несколько секунд после этого появляется аноксия, которая прежде всего нарушает функцию ЦНС, так как в ее нейронах в течение 2,5-3 мин наступает аноксическая деполяризация с массивным выходом К+ и диффузией Сl внутрь через цитоплазматическую мембрану. По истечении критического для аноксии нервной системы срока (5 мин) нейроны необратимо повреждаются и погибают.
Хроническая гипобарическая гипоксическая гипоксия развивается у лиц, длительно пребывающих на высокогорье. Она характеризуется длительной активацией нейроэндокринных механизмов мобилизации резервов использования кислорода в организме. Однако и в этом случае возникают дискоординация физиологических процессов и связанные с нею порочные круги.
Гиперпродукция эритропоэтина ведет к развитию полицитемии и изменениям реологических свойств крови, в том числе вязкости. В свою очередь увеличение вязкости повышает общее периферическое сопротивление сосудов, при котором возрастает нагрузка на сердце и развивается гипертрофия миокарда. Постепенное усиление потери СО2 с выдыхаемым воздухом сопровождается возрастанием ее отрицательного влияния на тонус гладкомышечных клеток сосудов, что способствует замедлению кровотока в малом круге кровообращения и повышению РСО2 в артериальной крови. Замедленный процесс изменений содержания СО2 во внеклеточной среде обычно слабо влияет на возбудимость хеморецепторов и не индуцирует их адаптационной перестройки. Это ослабляет эффективность рефлекторной регуляции газового состава крови и завершается возникновением гиповентиляции. Повышение РСО2 артериальной крови ведет к возрастанию проницаемости сосудов и ускорению транспорта жидкости в интерстициальное пространство. Возникающая при этом гиповолемия рефлекторно стимулирует продукцию гормонов, блокирующих выделение воды. Накопление ее в организме создает отечность тканей, нарушает кровоснабжение ЦНС, что проявляется в виде неврологических расстройств. При разряжении воздуха повышенная потеря влаги с поверхности слизистых оболочек часто приводит к развитию катара верхних дыхательных путей.
Цитотоксическую гипоксию вызывают цитотоксические яды, обладающие тропностью к ферментам аэробного окисления в клетках. При этом ионы цианидов связываются с ионами железа в составе цитохромоксидазы, что ведет к генерализованной блокаде дыхания клетки. Этот вид гипоксии может вызывать аллергическая альтерация клеток немедленного типа (реакции цитолиза). Для цитотоксической гипоксии характерна инактивация ферментных систем, катализирующих процессы биоокисления в клетках тканей при выключении функции цитохромоксидазы, прекращении переноса 02 от гемоглобина к тканям, резком снижении внутриклеточного редокс-потенциала, блокаде окислительного фосфорилирования, снижении активности АТФазы, усилении глико-, липо-, протеолитических процессов в клетке. Результатом таких повреждений является развитие нарушений Na+/K+-Hacoca, угнетение возбудимости нервных, миокардиальных и других типов клеток. При быстром возникновении дефицита потребления О2 в тканях (более 50 %) снижается артериовенозная разница по кислороду, увеличивается отношение лакчат/пируват, резко возбуждаются хеморецепторы, что чрезмерно увеличивает легочную вентиляцию, снижает РСО2 артериальной крови до 20 мм рт.ст., повышает pH крови и спинномозговой жидкости и вызывает гибель на фоне выраженного дыхательного алкалоза.
Гемическая гипоксия возникает при уменьшении кислородной емкости крови. Каждые 100 мл полностью оксигенированной крови здоровых мужчин и женщин, содержащей гемоглобин в количестве 150 г/л, связывают 20 мл О2. При снижении содержания гемоглобина до 100 г/л 100 мл крови связывают 14 мл О2, а при уровне гемоглобина 50 г/л происходит связывание лишь 8 мл О2. Дефицит кислородной емкости крови за счет количественной недостаточности гемоглобина развивается при постгеморрагической, железодефицитной и других видах анемий. Другой причиной гемической гипоксии является карбонмоно- оксидемия, которая легко возникает при наличии значительного количества СО во вдыхаемом воздухе. Сродство СО к гемоглобину в 250 раз превышает сродство О2. Поэтому СО быстрее, чем О2 взаимодействует с гемопротеинами - гемоглобином, миоглобином, цитохромоксидазой, цитохромом Р-450, каталазой и пероксидазой. Функциональные проявления при отравлении СО зависят от количества карбоксигемоглобина в крови. При 20- 40 % насыщении крови СО возникает сильная головная боль; при 40-50 % нарушаются зрение, слух, сознание; при 50-60 % развивается кома, кардиореспираторная недостаточность, смерть.
Разновидностью гемической гипоксии является анемическая гипоксия, при которой РО2 артериальной крови может быть в пределах нормы, в то время как содержание кислорода снижено. Уменьшение кислородной емкости крови, нарушение доставки кислорода тканям включает нейроэндокринные механизмы мобилизации резервов, направленных на компенсацию потребностей тканей в кислороде. Это происходит в основном за счет изменений параметров гемодинамики - уменьшения ОПС, прямо зависящего от вязкости крови, увеличения сердечного выброса и дыхательного объема. При недостаточности компенсации развиваются дистрофические процессы, главным образом в паренхиматозных клетках (разрастание соединительной ткани, склероз внутренних органов - печени И др.).
Местная циркуляторная гипоксия возникает при наложении на конечность кровоостанавливающего жгута (турникета), синдрома длительного раздавливания тканей, реплантации органов, особенно печени, при острой кишечной непроходимости, эмболиях, тромбозе артерий, инфаркте миокарда.
Кратковременная блокада циркуляции крови (турникет до 2 ч) ведет к резкому увеличению артериовенозной разницы в результате более полноценного извлечения тканями из крови кислорода, глюкозы и других питательных продуктов. Одновременно активируется гликогенолиз и в тканях поддерживается близкая к норме концентрация АТФ на фоне снижения содержания других макроэргов - фосфокреатина, фосфоэнолпирувата и др. Умеренно увеличивается концентрация глюкозы, глюкозо-6-фосфата, молочной кислоты, возрастает осмотичность интерстициальной жидкости без развития существенных нарушений клеточного транспорта одно- и двухвалентных ионов. Нормализация тканевого обмена после восстановления кровотока наступает в течение 5-30 мин.
Длительная блокада циркуляции крови (турникет более 3-6 ч) вызывает глубокую недостаточность Р02 в жидких средах, почти полное исчезновение запасов гликогена, чрезмерное накопление продуктов распада и воды в тканях. Это происходит в результате угнетения активности в клетках ферментных систем аэробного и анаэробного обмена, торможения синтетических процессов, резко выраженной недостаточности АТФ, АДФ и избытка АМФ в тканях, активации в них протеолитических, липолитических процессов. При нарушениях метаболизма ослабляется антиоксидантная защита и усиливается свободнорадикальное окисление, что ведет к повышению ионной проницаемости мембран. Накопление в цитозоле Na+ и особенно Са2+ активирует эндогенные фосфолипазы. В этом случае расщепление мембран фосфолипидов ведет к появлению в зоне нарушения циркуляции большого количества нежизнеспособных клеток с признаками острого повреждения, из которых во внеклеточную среду высвобождается избыточное количество токсичных продуктов перекисного окисления липидов, ишемических токсинов белковой природы, недоокисленных продуктов, лизосомальных ферментов, биологически активных веществ (гистамина, кининов) и воды. В этой зоне происходит также глубокая деструкция сосудов, особенно микроциркуляторного русла. Если на фоне таких тканевых и сосудистых повреждений возобновляется кровоток, то он осуществляется главным образом по раскрытым артериоловенулярным анастомозам. Из ишемизированных тканей в кровь резорбируется большое количество токсичных продуктов, провоцирующих развитие общей циркуляторной гипоксии. В самой зоне циркуляторной гипоксии после восстановления кровотока индуцируются постишемические нарушения. В раннем периоде реперфузии происходит набухание эндотелия, так как доставленный с кровью О2 является исходным продуктом для образования свободных радикалов, потенцирующих разрушение мембран клеток путем перекисного окисления липидов. В клетках и межклеточном веществе нарушается транспорт электролитов, изменяется осмолярность. Поэтому в капиллярах увеличивается вязкость крови, происходит агрегация эритроцитов, лейкоцитов, уменьшается осмотическое давление плазмы. В совокупности эти процессы могут приводить к некрозу (реперфузионные некрозы).
Острая общая циркуляторная гипоксия типична для шока - турникетного, травматического, ожогового, септического, гиповолемического; для тяжелых интоксикаций. Этот вид гипоксии характеризуется комбинацией недостаточности оксигенации органов и тканей, уменьшения количества циркулирующей крови, неадекватностью сосудистого тонуса и сердечного выброса в условиях чрезмерного усиления секреции КТА, АКТГ, глюкокортикоидов, ренина и других вазоактивных продуктов. Спазм резистивных сосудов вызывает резкое увеличение потребности тканей в кислороде, развитие дефицита оксигенации крови в системе микроциркуляции, увеличение капилляризации тканей и замедление кровотока. Возникновению застоя крови и повышению проницаемости сосудов в системе микроциркуляции способствует адгезия активированных микро- и макрофагов на эндотелии капилляров и посткапиллярных венул за счет экспрессии на цитолемме адгезионных гликопротеидов и образования псевдоподий. Неэффективность микроциркуляции усугубляется из-за раскрытия артериоловенулярных анастомозов, снижения ОЦК, угнетения деятельности сердца.
Исчерпывание резервов кислородного обеспечения клеток органов и тканей ведет к нарушению функций митохондрий, увеличению проницаемости внутренних мембран для Са2+ и других ионов, а также к повреждению ключевых ферментов аэробных обменных процессов. Угнетение окислительно-восстановительных реакций резко усиливает анаэробный гликолиз и способствует возникновению внутриклеточного ацидоза. В то же время повреждение цитоплазматической мембраны, повышение в цитозоле концентрации Са, активация эндогенных фосфолипаз ведут к расщеплению фосфолипидных компонентов мембран. Активация свободнорадикальных процессов в альтерированных клетках, избыточное накопление продуктов перекисного окисления липидов вызывают гидролиз фосфолипидов с образованием моноацил- глицерофосфатов и свободных полиеновых жирных кислот. Их аутоокисление обеспечивает включение окисленных полиеновых жирных кислот в сетку метаболических превращений через пероксидазные реакции.

Таблица 7. Время переживания клеток органов при острой циркуляторной гипоксии в условиях нормотермии


Орган

Время
переживания,
мин

Повреждаемые
структуры

Головной мозг

Кора большого мозга, аммонов рог, мозжечок (клетки Пуркинье)

Базальные ганглии

Спинной мозг

Клетки передних рогов и ганглиев

Сердце
эмболия легких
хирургическая
операция

Проводящая система

Сосочковые мышцы,

левый желудочек

Клетки периферической части ацинусов

Клетки центральной части ацинусов

Эпителий канальцев

Клубочки

Альвеолярные перегородки

Эпителий бронхов

В результате достигается высокая степень вне- и внутриклеточного ацидоза, что ингибирует активность ферментов анаэробного гликолиза. Эти нарушения сочетаются с почти полным отсутствием синтеза в тканях АТФ и других видов макроэргов. Ингибирование метаболизма в клетках при ишемии паренхиматозных органов вызывает тяжелые повреждения не только паренхиматозных элементов, но и эндотелия капилляров в виде отека цитоплазмы, втягивания мембраны эндотелиоцитов в просвет сосуда, резкого увеличения проницаемости при уменьшении числа пиноцитарных везикул, массивного краевого стояния лейкоцитов, особенно в посткапиллярных венулах. Эти нарушения приобретают наиболее выраженный характер при реперфузии. Микроваскулярные реперфузионные повреждения, как и ишемические, сопровождаются чрезмерным образованием продуктов окисления ксантиноксидазой. Реперфузия ведет к быстрой активации свободнорадикальных реакций и вымыванию в общий кровоток межуточных продуктов обменных процессов и токсичных веществ. Значительное повышение содержания в крови и тканях свободных аминокислот, тканевых токсинов белковой природы угнетает насосную деятельность сердца, вызывает развитие острой почечной недостаточности, нарушает синтез протеинов, антитоксическую и выделительную функции печени, подавляет активность ЦНС вплоть до летального исхода. Сроки переживания различных органов при острой циркуляторной гипоксии приведены в табл. 7.

Экзогенная гипоксия возникает при снижении парциального давления кислорода во вдыхаемом воздухе. Эта ситуация может возникать при стратосферных полетах в негерметизированной кабине и при отсутствии (или повреждении) кислородного питания; при прорыве рудничного газа в штрек шахты и вытеснении им воздуха; при нарушении подачи кислорода в скафандр водолаза; при попадании неадаптированного человека в высокогорье и в некоторых других сходных ситуациях.

Выделяют две нозологические формы экзогенной гипоксии: высотную болезнь и горную болезнь.

Высотная болезнь получила свое название в связи с тем, что люди столкнулись с ней, прежде всего, при освоении стратосферы, хотя, как уже указывалось выше, такое же состояние возникает и в земных, а, точнее, - в подземных условиях, когда парциальное давление кислорода снижается в результате прорыва рудничного газа и вытеснении им воздуха, которым дышат работающие в шахте люди. То же самое может происходить и при подводных работах, если нарушается подача кислорода в водолазный скафандр. Во всех этих случаях pO 2 во вдыхаемом воздухе резко снижается и возникает экзогенная гипоксия, отличающаяся стремительным развитием (острая или даже молниеносная гипоксия, приводящая к летальному исходу в течение нескольких минут).

От кислородного голодания страдает прежде всего центральная нервная система. В первые секунды развития гипоксии, вследствие нарушения наиболее чувствительного к различным воздействиям на ЦНС процесса внутреннего торможения, у человека возникает эйфория, проявляющаяся резким возбуждением, ощущением немотивированной радости и потерей критического отношения к своим действиям. Именно последним объясняются известные факты выполнения пилотами субстратосферных самолетов абсолютно нелогичных действий при наступлении состояния высотной болезни: ввод самолета в штопор, продолжение набора высоты вместо снижения и т.д. Кратковременная эйфория сменяется быстро наступающим глубоким торможением, человек теряет сознание, что в экстремальных условиях (в которых обычно и возникает высотная болезнь) приводит его к быстрой гибели. Борьба с высотной болезнью заключается в немедленной ликвидации ситуации, приведшей к снижению парциального давления кислорода во вдыхаемом воздухе (экстренное вдыхание кислорода, срочная посадка летательного аппарата, вывод на поверхность шахтеров и т.д.). После этого целесообразно провести дополнительную кислородную терапию.

Горная болезнь развивается у подавляющего большинства малотренированных и особенно - у астенизированных людей, постоянно живущих на равнине и поднимающихся в горы.

Первое упоминание о горной болезни мы находим в исторических хрониках, связанных с завоеванием испанцами южноамериканского континента. После захвата Перу испанские конкистадоры вынуждены были перенести столицу новой провинции из высокогорной Джауи в расположенную на равнине Лиму, поскольку испанское население Джауи не давало потомства и вымирало. И лишь через несколько десятилетий, в течение которых европейцы периодически поднимались в горы с последующим возвращением на равнину, произошла адаптация, и в Джауе в семье выходцев из Европы родился ребенок. В это же время Акоста (1590) дал и первое описание горной болезни. Путешествуя в Перуанских Андах, он отмечал у себя и своих спутников на высоте 4500 м развитие болезненного состояния и посчитал его причиной разреженность воздуха вследствие общего снижения атмосферного давления. И только спустя почти 200 лет, в 1786 г., Соссюр, испытавший горную болезнь при подъеме на Монблан, объяснил ее возникновение недостатком кислорода.

Точное определение высотного порога появления первых признаков горной болезни представляется довольно затруднительным, что обусловлено следующими четырьмя факторами.

Во-первых, для развития горной болезни существенное значение имеют различные климатические особенности высокогорья: ветер, солнечная радиация, высокий перепад дневных и ночных температур, низкая абсолютная влажность воздуха, наличие снега и т. д. Различное сочетание этих факторов в тех или иных географических районах приводит к тому, что один и тот же симптомокомплекс возникает у большинства людей на высоте 3000 м на Кавказе и в Альпах, на 4000 м - в Андах и на 7000 м - в Гималаях.

Во-вторых, у разных людей существует чрезвычайно высокая вариабельность индивидуальной чувствительности к высотному недостатку кислорода, которая зависит от пола, возраста, конституционального типа, степени тренированности, прошлого «высотного опыта», физического и психического состояния.

В-третьих, несомненное значение имеет и выполнение тяжелой физической работы, которая способствует появлению признаков горной болезни на меньших высотах.

В-четвертых, на развитие горной болезни существенно влияет скорость набора высоты: чем быстрее происходит подъем, тем ниже высотный порог.

Однако, несмотря на указанные трудности в определении высотного порога, можно считать, что высота свыше 4500 м - это тот уровень, при котором горная болезнь развивается у подавляющего большинства людей, хотя у отдельных индивидуумов первые признаки этого заболевания могут наблюдаться уже на высоте 1600-2000 м.

Как уже говорилось, этиологическим фактором горной болезни является снижение парциального давления кислорода во вдыхаемом воздухе и отсюда - уменьшение насыщения артериальной крови O 2 .

Перенос кровью кислорода - один из фундаментальных процессов жизнедеятельности организма. Кислород транспортируется кровью в гемоглобинсвязанной форме, и поэтому величина насыщения Hb кислородом представляет собой весьма важный фактор обеспечения последним тканей. Степень оксигенации гемоглобина находится в прямой зависимости от pO 2 вдыхаемого воздуха, которое снижается по мере увеличения высоты над уровнем моря. Числа, характеризующие эту зависимость, полученные при экспериментальной имитации в барокамере подъемов на разные высоты, представлены в таблице.*****tab17

Необходимо, однако, учитывать, что между величиной парциального давления кислорода во вдыхаемом воздухе и насыщением гемоглобина кислородом нет прямой зависимости. Это следует из S-образной кривой диссоциации оксигемоглобина, в связи с чем падение парциального давления кислорода со 100-105 до 80-85 мм рт.ст. незначительно влияет на величину насыщения гемоглобина кислородом.*****35 Поэтому на высоте 1000-1200 м кислородное обеспечение тканей в условиях покоя практически не меняется. Однако, начиная с высоты 2000 м, происходит прогрессивное снижение насыщения гемоглобина кислородом, и опять-таки, в силу S-образного характера кривой диссоциации оксигемоглобина, снижение парциального давления кислорода в альвеолярном воздухе в 2-2,5 раза (высота 4000-5000 м) приводит к уменьшению насыщения крови кислородом лишь на 15-20%, что в определенной степени компенсируется приспособительными реакциями дыхательной и сердечно-сосудистой систем. Высота же в 6000 м является критическим порогом, поскольку снижение в этом случае количества оксигемоглобина до 64% не может быть полностью компенсировано адаптационными процессами, развивающимися в организме.

Патогенетические механизмы горной болезни не исчерпываются только уменьшением насыщения крови кислородом. Одним из важнейших факторов ее патогенеза является снижение pCO2 в артериальной крови по мере увеличения высоты (смотри данные таблицы).

В основе этого явления лежит гипервентиляция легких - одна из основных и самых ранних адаптационных реакций организма при подъеме на высоту.

Гипервентиляция, сопровождающаяся увеличением минутного объема дыхания за счет увеличения частоты и глубины дыхательных движений, представляет собой рефлекторную реакцию дыхательного центра на раздражение аортальных и каротидных хеморецепторов пониженным содержанием кислорода в артериальной крови. Эта рефлекторная стимуляция дыхания, являясь компенсаторной реакцией организма на гипоксию, приводит к усиленному выделению легкими углекислого газа и возникновению дыхательного алкалоза.

Снижение парциального давления углекислого газа в равнинных условиях должно было бы привести к уменьшению легочной вентиляции, так как углекислота является одним из стимуляторов деятельности дыхательного центра. Однако при гипоксии, вызванной снижением pO 2 в альвеолярном воздухе, резко повышается чувствительность дыхательного центра к CO 2 , и поэтому при подъеме в горы гипервентиляция сохраняется даже при значительном снижении содержания углекислого газа в крови.

Кроме того, при подъеме на высоту обнаруживается снижение артерио-венозной разницы крови по кислороду, причем не только за счет снижения pO 2 в артериальной, но и в связи с повышением парциального давления кислорода в венозной крови.

Этот феномен базируется на двух механизмах. Первый заключается в том, что снижение парциального давления углекислого газа в артериальной крови ухудшает отдачу кислорода тканям. Второй же обусловлен наблюдающимся при подъеме на высоту своеобразным гистотоксическим эффектом, проявляющимся в снижении способности тканей утилизировать кислород, что приводит к развитию тканевой гипоксии.

Итак, ведущими патогенетическими механизмами горной болезни являются понижение парциального давления кислорода и углекислого газа в артериальной крови, вызванные этим нарушения кислотно-основного состояния и развитие гистотоксического эффекта с изменением способности тканей утилизировать кислород.

Горная болезнь может протекать в острой, подострой и хронической формах.

Острая форма горной болезни наблюдается при быстром перемещении неакклиматизированных людей на большую высоту, то есть при подъеме в горы с помощью специальных подъемников, автомобильного транспорта или авиации. Уровень высоты для проявления острой формы горной болезни бывает различным и определяется прежде всего индивидуальной устойчивостью к гипоксии. У одних признаки заболевания могут проявляться уже на высоте 1500 м, у большинства же симптомы становятся выраженными, начиная с высоты 3000 м. На высоте 4000 м 40-50% людей временно полностью утрачивают работоспособность, а у остальных она значительно снижается.

Острая форма горной болезни обычно начинается не сразу после быстрого подъема в горы, а спустя несколько часов (например, через 6-12 часов на высоте 4000 м). Она выражается в различной психической и неврологической симптоматике, головной боли, одышке при физических усилиях, побледнении кожных покровов с цианозом губ, ногтевого ложа, снижении работоспособности, расстройствах сна, тошноте, рвоте, потере аппетита. Характерным диагностическим тестом на горную болезнь является изменение почерка,*****36 свидетельствующее о нарушении тонкой двигательной дифференцировки мышечной деятельности.

Постоянным симптомом острой горной болезни является головная боль, имеющая прежде всего сосудистый генез. Расширение мозговых сосудов и растяжение их стенок вследствие повышенного кровенаполнения, будучи компенсаторной реакцией на гипоксию, вызывает улучшение кровоснабжения головного мозга. Это приводит, с одной стороны, к увеличению объема мозга и его механическому сдавлению в тесной черепной коробке, а, с другой, - к повышению проницаемости стенок сосудов и возрастанию давления спинномозговой жидкости. Именно поэтому механическое сдавление височных артерий, снижая приток крови к мозгу, приводит в некоторых случаях к уменьшению или снятию головной боли.

Другим четким симптомом острой горной болезни является резкое тахипноэ при малейшем физическом напряжении, которое часто сопровождается нарушением ритма дыхания. В тяжелых случаях отмечается появление периодического дыхания, свидетельствующего о выраженном снижении возбудимости дыхательного центра. Наиболее интенсивно эти нарушения проявляются во сне, в связи с чем после ночного сна, сопровождаемого нарушениями ритма дыхания, степень насыщения гемоглобина кислородом уменьшается. Поэтому симптоматика острой горной болезни в большей степени бывает выражена в утренние часы, чем в вечерние.

Ночное усиление гипоксии приводит к нарушениям сна и появлению тяжелых сновидений.

Переключение на дыхание чистым кислородом во время острой горной болезни быстро нормализует дыхание. Такой же эффект дает прибавление 2-3% углекислого газа к вдыхаемому воздуху. Это также предупреждает развитие периодического дыхания во время ночного сна.

Гипоксия и гипокапния приводят также к нарушениям аппетита, тошноте, рвоте, поскольку развивающийся при горной болезни дыхательный алкалоз возбуждает рвотный центр. Добавление углекислоты в дыхательную смесь может значительно ослабить эти проявления.

Вся симптоматика острой горной болезни наиболее выражена в течение первых двух дней подъема в горы и в последующие 2-4 суток постепенно ослабевает, что связано с включением в процесс ряда мощных приспособительных и компенсаторных механизмов. Эти механизмы в большинстве своем являются общими для самых различных форм гипоксии и потому будут рассмотрены в конце раздела, посвященного кислородному голоданию.

При функциональной недостаточности механизмов адаптации горная болезнь может перейти в подострую или хроническую формы, а также привести к развитию осложнений, требующих немедленного спуска больного до уровня моря. Кроме того, подострая и хроническая формы горной болезни могут развиваться самостоятельно при более медленном подъеме на горные высоты или при длительном пребывании на них. Клиническая картина этого процесса была описана Монге (1932) и названа им болезнью больших высот, которая впоследствии в научной литературе получила название болезни Монге.

Выделяют два типа этого заболевания: эритремический (эритремия больших высот), симптомы которого напоминают болезнь Вакеза (истинная красная полицетемия), и эмфизематозный, при котором на первый план выступают нарушения системы дыхания.

Эритремия больших высот может проявляться как в более мягком, подостром, так и в тяжело протекающем хроническом варианте.

Первая, чаще встречающаяся, подострая форма характеризуется более устойчивыми и сильнее выраженными (по сравнению с острой горной болезнью) симптомами. Частое и раннее проявление - общая усталость, не зависящая от количества выполненной работы, физическая слабость. Существенно изменяется высшая нервная деятельность, что проявляется нарушением мыслительных процессов и развитием депрессии. При общей вялости и наклонности к дремоте наблюдаются выраженные расстройства ночного сна вплоть до полной неспособности спать. Патогенетические механизмы этих симптомов связаны с длительной гипоксией и свойственным для этой формы горной болезни нарушением ритма дыхания, что усугубляет кислородное голодание тканей.

Отмечаются также изменения со стороны системы пищеварения в виде потери аппетита, тошноты, рвоты. В механизмах этих реакций, помимо гипоксии, гипокапнии и алкалоза, существенную роль играют расстройства высшей нервной деятельности, что проявляется в развитии непереносимости к отдельным видам пищи и даже в полном отказе от нее.

Отличительной особенностью данной формы заболевания является выраженная гиперемия слизистых оболочек, а также носа и ушных раковин. Причина этого заключается в значительном повышении в крови концентрации гемоглобина и количества эритроцитов. Концентрация гемоглобина увеличивается до 17 г% и более, а количество эритроцитов может превышать 7 000 000 в 1 мм 3 , что сопровождается выраженным увеличением показателя гематокрита и сгущением крови. Симптомы болезни могут либо пройти самопроизвольно, что означает наступление адаптации, либо продолжать нарастать с переходом процесса в хроническую форму.

Хроническая форма эритремии больших высот представляет собой тяжелое заболевание, часто требующее срочного перевода больного на более низкие высоты. Симптомы этой формы аналогичны описанным выше, но гораздо более выражены. Цианоз может быть столь сильным, что лицо приобретает синеватую окраску. Сосуды конечностей переполнены кровью, наблюдаются булавовидные утолщения ногтевых фаланг. Эти проявления обусловлены значительным снижением насыщения артериальной крови кислородом вследствие альвеолярной гиповентиляции, развивающейся при нарушениях ритма дыхания, общим увеличением количества циркулирующей крови и высочайшей полицетемией (количество эритроцитов в 1 мм 3 крови может достигать 12 000 000). Нарастают симптомы нарушения деятельности центральной нервной системы; в процессе развития болезни может иметь место полное изменение личности. В тяжелых случаях наступает коматозное состояние, одной из причин которого является газовый ацидоз, развивающийся вследствие гиповентиляции, связанной с нарушением ритма дыхания.

Для эмфизематозного типа горной болезни характерно преобладание легочных симптомов, развивающихся, как правило, на фоне длительно протекающих бронхитов. К главным проявлениям заболевания относится одышка, имеющая место в покое и переходящая в тяжелые нарушения ритма дыхания при любом физическом напряжении. Грудная клетка больного расширена и приобретает бочкообразную форму. Обычными являются рецедивирующие пневмонии с кровохарканьем. Развивается клиническая картина правожелудочковой сердечной недостаточности.

Вся эта симптоматика выявляется на фоне резкого изменения высшей нервной деятельности (вплоть до полного изменения личности индивидуума).

При морфологическом исследовании отмечаются гиперплазия красного костного мозга, структурные изменения бронхов и легких, характерные для эмфиземы, гипертрофия и последующая дилатация правого желудочка сердца, гиперплазия артериол.

Как острая, так и хроническая формы горной болезни могут дать ряд серьезных осложнений, представляющих угрозу для жизни больного. Среди них прежде всего следует назвать высотный отек легких (ВОЛ), который развивается преимущественно у недостаточно акклиматизированных к высоте людей, сразу же выполняющих физическую работу после быстрого (за 1-2 суток) подъема на высоту более 3000 м (нередко это бывает у недостаточно тренированных к высоте альпинистов). Высотный отек легких может развиться и у аборигенов высокогорья, когда они возвращаются в привычные для них условия после длительного пребывания в местности, расположенной на уровне моря.

Развитию ВОЛ предшествует быстрая утомляемость, нарастающая слабость и одышка в покое, которая возрастает при малейшем напряжении. Одышка усиливается в горизонтальном положении (ортопноэ), что вынуждает больного сидеть. Затем появляется шумное глубокое дыхание и кашель с пенистой розовой мокротой. Одышка и кашель обычно сочетаются с резкой тахикардией - до 120-150 уд/мин, что является компенсаторной реакцией на нарастающую кислородную недостаточность.

Определяющее значение в патогенезе ВОЛ имеет гипоксия, которая вызывает сужение легочных сосудов с развитием гипертензии малого круга кровообращения. Механизмы этой реакции носят как рефлекторный (ответ на раздражение хеморецепторов синокаротидной и аортальной рефлексогенных зон), так и местный характер. Поскольку тонус сосудов малого круга кровообращения регулируется pO 2 в альвеолярном воздухе, снижение парциального давления кислорода при подъеме на высоту приводит к легочной гипертензии.

Значительную роль в развитии легочной гипертензии играет и вызываемое гипоксией увеличение концентрации катехоламинов в крови, что вызывает сужение сосудов и перераспределение крови с увеличением ее количества в малом круге кровообращения и левых отделах сердца.

Повышение кровяного давления в системе малого круга кровообращения при одновременном увеличении проницаемости стенок сосудов, обусловленном их кислородным голоданием, является главным патогенетическим фактором ВОЛ.

Основное средство лечения ВОЛ - немедленный спуск больного вниз и кислородная терапия, что при своевременном применении быстро приводит к нормализации давления в легочных артериях, исчезновению экссудата из легких и выздоровлению.

При подъеме на высоту 4000 м и более может развиться и другое чрезвычайно серьезное осложнение горной болезни - отек мозга. Его возникновению предшествует сильная головная боль, рвота, расстройство координации движений, галлюцинации, неадекватное поведение. В дальнейшем наступает потеря сознания и нарушение деятельности жизненно важных регуляторных центров.

Как и ВОЛ, отек мозга связан с гипоксией. Компенсаторное увеличение мозгового кровотока, повышение внутрисосудистого давления при резком увеличении проницаемости сосудистых стенок за счет метаболических расстройств при кислородном голодании являются теми основными факторами, которые приводят к развитию этого грозного осложнения. При первых признаках отека мозга необходимы немедленный спуск, кислородная терапия и применение препаратов, способствующих выведению жидкости из организма.

К возможным осложнениям горной болезни относятся кровоизлияния (особенно часто - в сетчатку глаза) и тромбоз сосудов, обусловленные полицетемией и уменьшением объема плазмы крови, а также изменениями стенок сосудов при гипоксии. Описаны случаи возникновения тромбоэмболий сосудов мозга и инфаркта легких при восхождениях альпинистов на высоту 6000-8000 м без использования кислородных приборов.

Одним из нередких осложнений горной болезни может быть и правожелудочковая недостаточность сердца, вызванная высокой гипертензией в сосудах легких. Это осложнение развивается чаще всего после длительного пребывания в условиях высокогорья и связано с повышением сопротивления легочных сосудов на прекапиллярном уровне за счет утолщения мышечного слоя в мелких легочных артериях и мускуляризации легочных артериол.

Установлено, что различные патологические процессы (ожоговая болезнь, сердечно-сосудистые заболевания, сахарный диабет), возникающие в условиях высокогорья у недостаточно адаптированных к нему людей, протекают гораздо более тяжело, нежели аналогичные патологические процессы у аборигенов или же у лиц, которые имеют полноценную адаптацию к высоте. Однако при экстренном спуске таких больных в условия низкогорья или на равнину нередко происходит резкое ухудшение течения заболевания, приводящее к летальному исходу. Другими словами, адаптация требуется не только при подъеме на высоту, но и при спуске с нее.

Столь подробное изложение патогенетических механизмов и возможных осложнений горной болезни связано с практической значимостью этой проблемы. 1,5% населения земного шара проживает в высокогорье, а глобальные социальные и экономические процессы, а также практическая реализация некоторых результатов научно-технической революции приводят к миграции значительных контингентов людей с равнины в горы и обратно.

1. Дыхательная недостаточность, ее формы и причины.

2. Формы нарушения альвеолярной вентиляции. Гиповентиляция: причины возникновения и влияние на газовый состав крови.

3. Альвеолярная гипервентиляция, неравномерная альвеолярная вентиляция. Причины возникновения и влияние на газовый состав крови.

4. Возникновение дыхательной недостаточности при нарушениях легочной микроциркуляции и вентиляционно-перфузионных отношений.

5. Возникновение дыхательной недостаточности при изменении газового состава вдыхаемого воздуха и диффузионной способности альвеолярно-капиллярного барьера.

6. Влияние нарушений метаболической функции легких на гемодинамику и систему гемостаза. Причины и механизмы возникновения респираторного дистресс-синдрома.

7. Роль нарушений сурфактантной системы в патологии легких.

8. Одышка, ее причины и механизмы.

9. Патогенез изменений внешнего дыхания при нарушении проходимости верхних отделов дыхательных путей.

10. Патогенез изменений внешнего дыхания при нарушении проходимости нижних отделов дыхательных путей и эмфиземе легких.

11. Патогенез изменений внешнего дыхания при пневмониях, отеке легких и поражениях плевры.

12. Патогенез изменений внешнего дыхания при право- и левожелудочковой сердечной недостаточности.

13. Гипоксия: классификация, причины возникновения и характеристика. Асфиксия, причины, стадии развития (лекция, уч. А. Д. Адо 1994г., 354-357; уч. В.В. Новицкого, 2001 г., с. 528-533).

14. Влияние на организм повышения и понижения барометрического давления. Патологическое дыхание (уч. А. Д. Адо 1994 г., с.31-32, с.349-350; уч. В.В. Новицкого, 2001 г., с.46-48, с.522-524).

15. Приспособительные механизмы при гипоксии (срочные и долговременные). Повреждающее действие гипоксии (уч. А. Д. Адо 1994г., стр. 357-361; уч. В.В. Новицкого, 2001 г., с.533-537).

3.3. Патофизиология системы крови (метод. пособие "Патофизиология кроветворной системы).

1. Изменения общего объема крови. Кровопотеря (уч.Адо, 1994г, с.268-272; уч. В.В. Новицкого, 2001 г., с. 404-407).

2. Регуляция гемопоэза и причины ее нарушения.

3. Определение понятия "анемия". Признаки изменений эритропоэза и характеристики анемий.

4. Патогенетическая классификация анемий.

5. Причины уменьшения образования эритроцитов и характеристика анемий, возникающих в результате этого.

6. Причины нарушения дифференцировки эритроцитов и характеристика анемий, возникающих в результате этого.

7. Причины уменьшения синтеза гемоглобина и характеристика анемий, возникающих в результате этого.

8. Гемолитические анемии. Их причины и характеристика.

9. Патогенез острой постгеморрагической анемии и ее характеристика.

10. Патогенез лейкоцитозов и лейкопений, их виды. Лейкемоидные реакции.

11. Понятие о гемобластозах. Лейкозы, их классификация и изменения периферической крови, характерные для них.

12. Эритроцитозы и эритремии.

13. Лучевая болезнь: этиология, патогенез, формы, периоды, изменения крови (уч. А. Д. Адо, 1994 г. с.39-44; уч. В.В. Новицкого, 2001 г., с. 54-60 раздел 2.8)

Гипоксический тип гипоксии (экзогенная гипоксия) развивается в результате снижения рО2 во вдыхаемом воздухе. Наиболее типичным ее проявлением являются горная и высотная болезни. Гипоксическая гипоксия может возникнуть во всех случаях, когда осуществляется дыхание газовыми смесями с недостаточным парциальным давлением кислорода. Необходимо помнить, что гипоксическая гипоксия может возникнуть при дыхании в замкнутом пространстве (отсеки подводной лодки, хранилища, бункера, ангары), а также при неисправности дыхательной аппаратуры.

При гипоксической гипоксии рО2 снижается как в альвеолярном воздухе, так и в артериальной крови, тканях. Уменьшается общий венозно-воздушный градиент.

Выделяют 4 степени тяжести гипоксии в зависимости от рО2 артериальной крови:
1 степень рО2 - 60-45 мм рт. ст. Появляются первые видимые признаки наруше-
ния функций сердечно-сосудистой и дыхательной систем в виде тахикардии, тахипноэ, нарушение координации движений, развитие мышечной слабости.

2 степень рО2 - 50-40 мм рт.
ст. Прекоматозное состояние, нарушение психики и
эмоциональной сферы в виде немотивированной эйфории (по причине гипоксии коры головного мозга), дальнейшее нарушение координации движений, потеря чувствительности, выраженные признаки сердечной и дыхательной недостаточности.

3 степень рО2 - 40-20 мм рт. ст. Характеризуется потерей сознания. У пострадав-
шего церебральная кома, ригидность мышц, может произойти остановка сердца.

4 степень рО2 - меньше 20 мм рт. ст. Характеризуется развитием терминального состояния со всеми признаками данного процесса и гибелью пострадавшего.
Из приведенных данных видно, что летальным считается рОг, соответствующее нескольким десяткам мм рт. ст., то есть когда содержание кислорода во вдыхаемом воздухе уменьшается на 60% и более.

Одной из распространенных форм гипоксической гипоксии является высотная болезнь - остро развивающееся состояние, в котором выделяют 2 формы:
♦ коллаптоидную (характеризуется прогрессирующим падением артериального давления);
♦ обморочную (сопровождается потерей сознания в течение 10-15 секунд).

Горная болезнь развивается при пребывании в условиях высокогорья или при длительном нахождении в барокамере в условиях гипобарии.
Помимо парциального давления кислорода в механизмах развития горной болезни существенное значение имеют влажность воздуха, инсоляция, сильные ветры, низкая минерализация питьевой воды.

Поэтому течение горной болезни отличается на одних и тех же высотах, но в разной местности.
Выделяют следующие формы горной болезни:
♦ высокогорный отек легких;
♦ высокогорный отек головного мозга;
геморрагический синдром;
♦ нарушение свертывающей системы крови с преимущественной гиперкоагуляцией.

По длительности течения выделяют:
♦ молниеносная (обморочная форма горной болезни) - развивается в течение нескольких секунд;
♦ острая (коллаптоидная форма горной болезни) - в течение нескольких минут;
♦ хроническая (при пребывании в условиях высокогорья в течение многих часов и суток).

Основной этиологический фактор горной болезни - это снижение парциального давления кислорода в альвеолярной газовой смеси, обусловленное низким парциальным давлением кислорода во вдыхаемой газовой смеси.
От горной болезни страдают 30% неадаптированных к высотной гипоксемии людей после быстрого подъема на высоту, большую, чем 3000 м над уровнем моря. У 75% непри-споболенных субъектов симптомы острой горной болезни выявляют после быстрого подъема на высоту, превышающую 4500 м над уровнем моря. Головная боль как первый признак начала развития горной болезни связана со спазмом сосудов головного мозга в ответ на падение напряжения углекислого газа в артериальной крови в результате компенсаторной гипервентиляции, обусловливающей гипокапнию, но не устраняющей артериальной гипоксемии. Когда напряжение кислорода в артериальной крови не больше, чем 60 мм рт. ст., то значительный гипоэргоз церебральных нейронов, несмотря противодействие системы ауторе-гуляции локальной скорости мозгового кровотока, обусловливает расширение артериол и раскрытие прекапилярных сфинктеров в системе микроциркуляции мозга. В результате увеличивается кровоснабжение головного мозга, что повышает внутричерепное давление и проявляет себя головной болью.

Компенсаторная гипервентиляция у страдающих горной болезнью на высотах в диапазоне 3000-4500 м над уровнем моря вызывает респираторный алкалоз и бикарбонатурию как компенсаторную реакцию на снижение содержания протонов и рост бикарбонатного аниона во внеклеточной жидкости и клетках.
Бикарбо-натурия усиливает натрийурез и, снижая содержание в организме натрия, уменьшает объем внеклеточной жидкости и даже обусловливает гиповолемию. При подъеме на высоты, на которых компенсаторные реакции в ответ на гипоксиче-скую гипоксию не в состоянии предотвратить связанного с ней гипоэргоза клеток, гипервентиляция через повышение потребления кислорода организмом обостряет системный гипоэргоз. Усиление системного гипорэргоза на уровне всего организма повышает интенсивность анаэробного гликолиза, что вызывает метаболический лактатный ацидоз типа А.

Патологически низкое парциальное давление кислорода во вдыхаемой газовой смеси служит стимулом для «альвеоло-капиллярного рефлекса» с еще не выявленным центральным звеном. В эфферентном звене, на уровне эффектора, рефлекс сужает легочные венулы и артериолы, что обусловливает легочную первичную как венозную, так и артериальную гипертензию. Легочная артериальная гипертензия может приводить к острой правожелудочковой недостаточности в результате патогенно высокой постнагрузки правого желудочка.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции