11.03.2020

Метаболическая функция почек. Что обеспечивают почки? Экскректорная функция - как основная обязанность почек


Сотни поставщиков везут лекарства от гепатита С из Индии в Россию, но только M-PHARMA поможет вам купить софосбувир и даклатасвир и при этом профессиональные консультанты будут отвечать на любые ваши вопросы на протяжении всей терапии.

Нефропатия - это патологическое состояние обеих почек, при котором они не могут полноценно выполнять свои функции. Процессы фильтрации крови и выведения мочи оказываются нарушенными по разным причинам: эндокринные заболевания, опухоли, врожденные аномалии, сдвиги обмена веществ. Метаболическая нефропатия у детей диагностируется чаще, чем у взрослых, хотя нарушение может остаться и незамеченным. Опасность развития метаболической нефропатии заключается в негативном влиянии болезни на весь организм.

Метаболическая нефропатия: что это такое?

Ключевой фактор развития патологии - нарушение обменных процессов в организме. Различают также дисметаболическую нефропатию, под которой понимают ряд нарушений обменного характера, сопровождающихся кристаллурией (образованием кристаллов солей, обнаруживаемых при сдаче анализа мочи).

В зависимости от причины развития различают 2 формы заболевания почек:

  1. Первичная - возникает на фоне прогрессирования наследственных заболеваний. Она способствует формированию камней в почках, развитию хронической почечной недостаточности.
  2. Вторичная - проявляется при развитии заболеваний других систем организма, может возникнуть на фоне применения лекарственной терапии.

Важно! Наиболее часто метаболическая нефропатия является следствием нарушения кальциевого обмена, перенасыщения организма фосфатом, оксалатом кальция и щавелевой кислотой.

Факторы развития

Предрасполагающими факторами к развитию метаболической нефропатии выступают следующие патологии:

Среди метаболических нефропатий выделяют подвиды, которые характеризуются наличием в моче кристаллов солей. У детей чаще бывает оксалатно-кальциевая нефропатия, где наследственный фактор влияет на развитие болезни в 70-75% случаев. При наличии хронических инфекций в мочевыделительной системе наблюдается фосфатная нефропатия, а при нарушении обмена мочевой кислоты диагностируют уратную нефропатию.

Врожденные нарушения обмена веществ встречаются у детей, испытывающих гипоксию при внутриутробном развитии. Во взрослом возрасте патология имеет приобретенный характер. Вовремя распознать болезнь можно по ее характерным признакам.

Симптомы и виды заболевания

Нарушение работы почек при сбое в обмене веществ влечет следующие проявления:

  • развитие воспалительных процессов в почках, мочевом пузыре;
  • полиурия - увеличение объема выделения мочи на 300-1500 мл выше нормы;
  • возникновения конкрементов в почках (уролитиаз);
  • появление отеков;
  • нарушение мочеиспускания (задержка или учащение);
  • появление боли в области живота, поясницы;
  • покраснение и отечность половых органов, сопровождаемые зудом;
  • отклонения от нормы в показателях анализа мочи: обнаружение в ней фосфатов, уратов, оксалатов, лейкоцитов, белка и крови;
  • снижение жизненного тонуса, повышенная утомляемость.

У ребенка на фоне развития болезни могут наблюдаться признаки вегетососудистой дистонии - ваготония (апатия, депрессивное состояние, нарушения сна, плохой аппетит, чувство нехватки воздуха, ком в горле, головокружения, отечность, запоры, склонность к аллергии) или симпатикотония (вспыльчивость, рассеянность, повышенный аппетит, онемение конечностей по утрам и непереносимость жары, склонность к тахикардии и повышению артериального давления).

Диагностика

Один из основных анализов, указывающих на развитие метаболической нефропатии, - биохимический анализ мочи. Он позволяет определить, есть ли отклонения в работе почек, благодаря возможности выявления и определения количества калия, хлора, кальция, натрия, белка, глюкозы мочевой кислоты, холинэстеразы.

Важно! Для проведения биохимического анализа потребуется суточная моча, а для достоверности результата нужно воздержаться от приема алкоголя, острых, жирных, сладких блюд, продуктов, окрашивающих мочу. За сутки до сдачи анализа стоит прекратить прием уросептиков и антибиотиков и предупредить об этом врача.

Степень изменения почек, наличие в них воспалительного процесса или песка помогут выявить методы диагностики: УЗИ, рентгенография.

О состоянии организма в целом можно судить по проведенному анализу крови. В зависимости от результатов диагностики заболевания почек назначается лечение. Терапия будет направлена также на органы, ставшие первопричиной метаболического сбоя.

Лечение и профилактика

Поскольку нефропатия может возникнуть при различных заболеваниях, каждый конкретный случай требует отдельного рассмотрения и лечения.

Подбор медикаментов осуществляет только врач. Если, например, нефропатия вызвана воспалением, не исключена необходимость приема антибиотиков, а если повышенным радиоактивным фоном - поможет устранение негативного фактора или, при необходимости лучевой терапии, - введение радиопротекторов.

Препараты

В качестве препарата, корректирующего обмен веществ, назначается витамин В6. При его недостатке блокируется выработка фермента трансаминазы, и щавелевая кислота перестает преобразовываться в растворимые соединения, образуя камни в почках.

Кальциевый обмен нормализует препарат Ксидифон. Он предотвращает образование нерастворимых соединений кальция с фосфатами, оксалатами, способствует выведению тяжелых металлов.

Цистон - препарат на основе растительных компонентов, который улучшает кровоснабжение почек, способствует выделению мочи, снимает воспаление, способствует разрушению конкрементов в почках.

Димефосфон нормализует кислотно-щелочное равновесие при нарушениях работы почек вследствие развития ОРЗ, болезней легких, сахарном диабете, рахите.

Диета

Обобщающим фактором терапии является:

Основа диетического питания при метаболической нефропатии - резкое ограничение натрия хлорида, продуктов, содержащих щавелевую кислоту, холестерин. В результате достигается снижение отечности, устраняется протеинурия и прочие проявления нарушенного метаболизма. Порции должны быть небольшими, а прием пищи регулярным, не менее 5-6 раз в день.

Допускаются к употреблению:

  • супы крупяные, вегетарианские, молочные;
  • хлеб отрубной без добавления соли и разрыхлителей;
  • мясо отваренное с возможностью дальнейшей обжарки: телятина, баранина, крольчатина, курятина;
  • рыба нежирных сортов: треска, минтай, окунь, лещ, щука, камбала;
  • молочные продукты (кроме соленых сыров);
  • яйца (не более 1 в день);
  • крупы;
  • овощные салаты без добавления редьки, шпината, щавеля, чеснока;
  • ягоды, фруктовые десерты;
  • чай, кофе (некрепкий и не более 2 чашек в день), соки, отвар шиповника.

Из рациона необходимо устранить:

  • супы на основе жирных сортов мяса, грибные;
  • сдобу; обычный хлеб; слоеную, песочную выпечку;
  • свинину, субпродукты, колбасы, копченые мясные изделия, консервы;
  • рыбу жирных сортов (осетровых, палтуса, сайру, скумбрию, угря, сельдь);
  • какаосодержащие продукты и напитки;
  • острые соусы;
  • воду, богатую натрием.

Из числа разрешенных продуктов можно приготовить множество блюд, поэтому придерживаться диеты несложно.

Важным условием лечения является соблюдение питьевого режима. Большое количество жидкости способствует устранению застоев мочи и выводит соли из организма. Постоянное проявление умеренности в еде и отказ от вредных привычек помогут нормализовать функции почек, предупредить возникновение болезни людям с нарушениями обмена веществ.

При возникновении симптомов патологии следует посетить специалиста. Врач проведет обследование больного и подберет оптимальный метод терапии. Любые попытки самолечения могут привести к негативным последствиям.

Прежде всего следует разграничить понятия метаболизма почки и метаболической функции почки. Метаболизм почки - это процессы обмена веществ в почке, которые обеспечивают выполнение всех ее функций. Метаболическая функция почек связана с поддержанием в жидкостях внутренней среды постоянного уровня, белков, углеводов и липидов.

Через мембрану клубочка не проходят альбумины и глобулины, но свободно фильтруются низкомолекулярные белки, пептиды. Следовательно, в канальцы постоянно поступают гормоны, измененные белки. Клетки проксимального канальца нефрона захватывают и затем расщепляют их до аминокислот, которые через базальную плазматическую мембрану транспортируются во внеклеточную жидкость, а затем в кровь. Это способствует восстановлению в организме фонда аминокислот. Таким, образом, почки играют важную роль в расщеплении низкомолекулярных -и, измененных белков, благодаря чему организм освобождается от физиологически активных веществ, что улучшает точность регуляции, а возвращающиеся в кровь аминокислоты используются для нового синтеза. В почках имеется активная система образования глюкозы. При длительном голодании в почках синтезируется примерно половина общего количества глюкозы, поступающей в кровь. Для этого используются органические кислоты. Превращая эти кислоты в глюкозу - химически нейтральное вещество- почки тем самым способствуют стабилизации рН крови, поэтому при алкалозе синтез глюкозы из кислых субстратов снижен.

Участие почки в обмене липидов связано с тем, что почкой извлекаются из крови свободные жирные кислоты и их окисление в значительной степени обеспечивает работу почки. Эти кислоты в плазме связаны с альбуминами и поэтому они не фильтруются. В клетки нефрона они поступают из межклеточной жидкости. Свободные жирные кислоты включаются в фосфолипиды почки, которые здесь играют важную роль в выполнении различных транспортных функций. Свободные жирные кислоты в почке включаются также в состав триацилглицеридов и фосфолипидов и в виде этих соединений затем поступают в кровь.

Регуляция деятельности почек

Нервная регуляция. Почки являются одним из важных исполнительных органов в системе различных рефлексов, регулирующих постоянство внутренней среды организма. Нервная система оказывает влияние на все процессы мочеобразования - фильтрацию, реабсорбцию и секрецию.

Раздражение симпатических волокон, иннервирующих почки, приводит к сужению кровеносных сосудов в почках. Сужение приносящих артериол сопровождается уменьшением давления крови в клубочках и уменьшением величины фильтрации. При сужении выносящих артериол фильтрационное давление повышается и фильтрация увеличивается. Симпатические влияния стимулируют реабсорбцию натрия.

Парасимпатические влияния активируют реабсорбцию глюкозы и секрецию органических кислот.

Болевые раздражения приводят к рефлекторному уменьшению мочеотделения вплоть до полного прекращения мочеобразования. Это явление получило название болевой анурии. Механизм болевой анурии заключается в том, что наступает спазм приносящих артериол при увеличении активности симпатической нервной системы и секреции катехоламинов надпочечниками, это приводит к резкому снижению клубочковой фильтрации. Помимо этого,в результате активации ядер гипоталамуса происходит увеличение секреции АДГ, который усиливает реабсорбцию воды и тем самым уменьшает диурез. Этот гормон повышает проницаемость стенок собирательных трубок опосредованно через активацию фермента гиалауронидазы. Этот фермент деполимеризует гиалуроновую кислоту, входящую в состав межклеточного вещества стенок собирательных трубок. Стенки собирательных трубок становятся более пористыми за счет увеличения межклеточных промежутков и создаются условия для перемещения воды по осмотическому градиенту. Фермент гиалуронидаза образуется, по-видимому, эпителием собирательных трубок и активируется под влиянием АДГ. При уменьшении секреции АДГ стенки дистальных отделов нефрона становятся практически полностью непроницаемыми для воды и большое количество ее выводится с мочой, при этом диурез может возрасти до 25 л в сутки. Такое состояние называется несахарным диабетом (несахарное мочеизнурение).

Прекращение мочеотделения, наблюдаемое при болевом раздражении, может быть вызвано условно-рефлекторно. Условно-рефлекторным путем может быть вызвано и увеличение диуреза. Условно-рефлекторные изменения величины диуреза свидетельствуют о влиянии на деятельность почек высших отделов ЦНС, а именно коры головного мозга.

Гуморальная регуляция. Гуморальной регуляции деятельности почек принадлежит ведущая роль. В целом перестройка деятельности почек, ее приспособление к непрерывно меняющимся условиям существования выделяется преимущественно влияниями на гломерулярный и каиальцевый аппараты различных гормонов: АДГ, альдостерона, паратгормона, тироксина и многих других, из них наиболее важными являются первые два.

Антидиуретический гормон, как уже отмечалось выше, усиливает реабсорбцию воды и тем самым уменьшает диурез (отсюда и его название). Это имеет важное значение для поддержания константы осмотического давления крови. При повышении осмотического давления повышается секреция АДГ и это приводит к отделению концентрированной мочи, что освобождает организм от избытка солей с минимальными потерями воды. Уменьшение осмотического давления крови приводит к снижению секреции АДГ и, следовательно, к выделению более жидкой мочи и освобождению организма от излишков воды.

Уровень секреции АДГ зависит не только от активности осморецепторов, но и от активности волюморецепторов, которые реагируют на изменение объема внутрисосудйстой и внеклеточной жидкости.

Гормон альдостерон увеличивает реабсорбцию ионов натрия и секрецию калия клетками почечных канальцев. Из внеклеточной жидкости этот гормон проникает через базальную плазматическую мембрану в цитоплазму клетки, соединяется с рецептором и этот комплекс поступает в ядро, где образуется новый комплекс альдостерона со стереоспецифичным для него хроматином. Увеличение секреции ионов калия под влиянием альдостерона не связано с активацией белоксинтезирующего аппарата клетки. Альдостерон повышает калиевую проницаемость апикальной мембраны клетки и тем самым увеличивает поступление ионов калия в мочу. Альдостерон уменьшает реабсорбцию кальция и магния в проксимальных отделах канальцев.

Дыхание

Дыхание является одной из жизненно важных функций организма, направленной на поддержание оптимального уровня окислительно-восстановительных процессов в клетках. Дыхание - сложный биологический процесс, который обеспечивает доставку кислорода тканям, использование его клетками в процессе метаболизма и удаление образовавшегося углекислого газа.

Весь сложный процесс дыхания можно разделить на три основных этапа: внешнее дыхание, транспорт газов кровью и тканевое дыхание.

Внешнее дыхание - газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание в свою очередь можно разделить на два этапа:

Обмен газов между атмосферным и альвеолярным воздухом;

Газообмен между кровью легочных капилляров и альвеолярный воздухом (обмен газов в легких).

Транспорт газов кровью. Кислород и углекислый газ в свободном растворенном состоянии переносятся в незначительном количестве, основной объем этих газов транспортируется в связанном состоянии. Основным переносчиком кислорода является гемоглобин. С помощью гемоглобина транспортируется также до 20% углекислого газа (карбгемоглобин). Остальная часть углекислого газа переносится в виде бикарбонатов плазмы крови.

Внутренне или тканевое дыхание. Этот этап дыхания также можно разделить на два:

Обмен газов между кровью и тканями;

Потребление клетками кислорода и выделение углекислого газа.

Внешнее дыхание осуществляется циклически и состоит из фазы вдоха, выдоха и дыхательной паузы. У человека частота дыхательных движений в среднем равна 16-18 в одну минуту.

Биомеханика вдоха и выдоха

Вдох начинается с сокращения дыхательных (респираторных) мышц.

Мышцы, сокращение которых приводит к увеличению объема грудной полости, называются инспираторными, а мышцы, сокращение которых приводит к уменьшению объема грудной полости, называются экспираторными. Основной инспираторной мышцей является мышца диафрагмы. Сокращение мышцы диафрагмы приводит к тому, что купол ее уплощается, внутренние органы оттесняются вниз, что приводит к увеличению объема грудной полости в вертикальном направлении. Сокращение наружных межреберных и межхрящевых мышц приводит к увеличению объема грудной полости в сагитальном и фронтальном направлениях.

Легкие покрыты серозной оболочкой - плеврой, состоящей из висцерального и париетального листков. Париетальный листок соединен с грудной клеткой, а висцеральный - с тканью легких. При увеличении объема грудной клетки, в результате сокращения инспираторных мышц, париетальный листок последует за грудной клеткой. В результате появления адгезивных сил между листками плевры, висцеральный листок последует за париетальным, а вслед за ними и легкие. Это приводит к возрастанию отрицательного давления в плевральной полости и к увеличению объема легких, что сопровождается снижением в них давления, оно становится ниже атмосферного и воздух начинает поступать в легкие - происходит вдох.

Между висцеральным и париетальным листками плевры находится щелевидное пространство, которое называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного, его называют отрицательным давлением. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха - 1-2 мм рт. ст., к концу спокойного выдоха - 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха - 15-20 мм рт. ст.

Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких - силой, с которой легкие постоянно стремятся уменьшить свой объем. Эластическая тяга легких обусловлена двумя причинами:

Наличием в стенке альвеол большого количества эластических волокон;

Поверхностным натяжением пленки жидкости, которой покрыта внутренняя поверхность стенок альвеол.

Вещество, покрывающее внутреннюю поверхность альвеол называется сурфактантом. Сурфактант имеет низкое поверхностное натяжение и стабилизирует состояние альвеол, а именно, при вдохе он предохраняет альвеолы от перерастяжения (молекулы сурфактанта расположены далеко друг от друга, что сопровождается повышением величины поверхностного натяжения), а при выдохе - от спадения (молекулы сурфактанта расположены близко друг к другу, что сопровождается снижением величины поверхностного натяжения).

Значение отрицательного давления в плевральной полости в акте вдоха проявляется при поступлении воздуха в плевральную полость, т. е. пневмотораксе. Если в плевральную полость поступает небольшое количество воздуха, легкие частично спадаются, но вентиляция их продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается и легкие расправляются.

При нарушении герметичности плевральной полости, например, при проникающих ранениях грудной клетки или при разрыве ткани легкого в результате его поражения каким-либо заболеванием, плевральная полость сообщается с атмосферой и давление в ней становится равным атмосферному, легкие спадаются полностью, их вентиляция прекращается. Такой пневмоторакс называется открытым. Открытый двусторонний пневмоторакс несовместим с жизнью.

Частичный искусственный закрытый пневмоторакс (введение в плевральную полость с помощью иглы некоторого количества воздуха) применяется с лечебной целью, например, при туберкулезе частичное спадение пораженного легкого способствует заживлению патологических полостей (каверн).

При глубоком дыхании в акте вдоха участвуют ряд вспомогательных дыхательных мышц, к которым относятся: мышцы шеи, груди, спины. Сокращение этих мышц вызывает перемещение ребер, что оказывает содействие инспираторным мышцам.

При спокойном дыхании вдох осуществляется активно, а выдох пассивно. Силы, обеспечивающие спокойный выдох:

Сила тяжести грудной клетки;

Эластическая тяга легких;

Давление органов брюшной полости;

Эластическая тяга перекрученных во время вдоха реберных хрящей.

В активном выдохе принимают участие внутренние межреберные мышцы, задняя нижняя зубчатая мышца, мышцы живота.

Вентиляция легких. Вентиляция легких определяется объемом воздуха, вдыхаемого или выдыхаемого в единицу времени. Количественной характеристикой легочной вентиляции является минутный объем дыхания (МОД) - объем воздуха, проходящего через легкие за одну минуту. В состоянии покоя МОД равен 6-9 л. При физической нагрузке его величина резко возрастает и составляет 25-30 л.

Так как газообмен между воздухом и кровью осуществляется в альвеолах, то важна не общая вентиляция легких, а вентиляция альвеол. Альвеолярная вентиляция меньше вентиляции легких на величину мертвого пространства. Если из величины дыхательного объема вычесть объем мертвого пространства, то получится объем воздуха, содержащегося в альвеолах, а если эту величину умножить на частоту дыхания, получим альвеолярную вентиляцию. Следовательно, эффективность альвеолярной вентиляции выше при более глубоком и редком дыхании, чем при частом и поверхностном.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха. Атмосферный воздух, которым дышит человек, имеет относительно постоянный состав. В выдыхаемом воздухе меньше кислорода и больше углекислого газа, в альвеолярном воздухе еще меньше кислорода и больше углекислого газа.

Вдыхаемый воздух содержит 20,93% кислорода и 0,03% углекислого газа, выдыхаемый воздух - кислорода 16%, углекислого газа 4,5% и в альвеолярном воздухе содержится 14% кислорода и 5,5% углекислого газа. В выдыхаемом воздухе углекислого газа содержится меньше, чем в альвеолярном. Это связано с тем, что к выдыхаемому воздуху примешивается воздух мертвого пространства с низким содержанием углекислого газа и его концентрация уменьшается.

Транспорт газов кровью

Кислород и углекислый газ в крови находятся в двух состояниях: в химически связанном и в растворенном. Перенос кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух происходит путем диффузии. Движущей силой диффузии является разность парциального давления (напряжения) кислорода и углекислого газа в крови, и в альвеолярном воздухе. Молекулы газа в силу диффузии переходят из области большего его парциального давления в область низкого парциального давления.

Транспорт кислорода. Из общего количества кислорода, который содержится в артериальной крови, только 0,3 об% растворено в плазме, остальное количество кислорода переносится эритроцитами, в которых он находится в химической связи с гемоглобином, образуя оксигемоглобин. Присоединение кислорода к гемоглобину (оксигенация гемоглобина) происходит без изменения валентности железа.

Степень насыщения гемоглобина кислородом, т. е. образование оксигемоглобина, зависит от напряжения кислорода в крови. Эта зависимость выражается графиком диссоциации оксигемоглобина (рис.29).

Рис.29. График диссоциации оксигемоглобина:

а-при нормальном парциальном давлении СО 2

б-влияние изменений парциального давления СО 2

в-влияние изменений рН;

г-влияние изменений температуры.

Когда напряжение кислорода в крови равно нулю, в крови находится только восстановленный гемоглобин. Повышение напряжения кислорода приводит к увеличению количества оксигемоглобина. Особенно быстро уровень оксигемоглобина возрастает (до 75%) при увеличении напряжения кислорода от 10 до 40 мм рт. ст., а при напряжении кислорода, равным 60 мм рт. ст. насыщение гемоглобина кислородом достирает 90%. При дальнейшем повышении напряжения кислорода насыщение гемоглобина кислородом к полному насыщению идет очень медленно.

Крутая часть графика диссоциации оксигемоглобина соответствует напряжению кислорода в тканях. Отлогая часть графика соответствует высоким напряжениям кислорода и свидетельствует о том, что в этих условиях содержание оксигемоглобина мало зависит от напряжения кислорода и его парциального давления в альвеолярном воздухе.

Сродство гемоглобина к кислороду изменяется в зависимости от многих факторов. Если сродство гемоглобина к кислороду повышается, то процесс идет в сторону образования оксигемоглобина и график диссоциации смещается влево. Это наблюдается при снижении напряжения углекислого газа при понижении температуры, при сдвиге рН в щелочную сторону.

При снижении сродства гемоглобина к кислороду процесс идет больше в сторону диссоциации оксигемоглобина, при этом график диссоциации смещается вправо. Это наблюдается при повышении парциального давления углекислого газа, при повышении температуры, при смещении рН в кислую сторону.

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови. Она зависит от содержания гемоглобина в крови. Один грамм гемоглобина способен присоединить 1,34 мл кислорода, следовательно, при содержании в крови 140 г/л гемоглобина кислородная емкость крови будет 1,34 " 140-187,6 мл или около 19 об%.

Транспорт углекислого газа . В растворенном состоянии транспортируется всего 2,5-3 об % углекислого газа, в соединении с гемоглобином - карбгемоглобин - 4-5 об% и в виде солей угольной кислоты 48-51 об% при условии, если из венозной крови можно извлечь около 58 об% углекислого газа.

Углекислый газ быстро диффундирует из плазмы крови в эритроциты. Соединяясь с водой, он образует слабую угольную кислоту. В плазме эта реакция идет медленно, а в эритроцитах под влиянием фермента карбоангидразы она резко ускоряется. Угольная кислота сразу же диссоциирует на ионы Н + и НСО 3 - . Значительная часть ионов НСО 3 - выходит обратно в плазму (рис. 30).

Рис.30. Схема процессов, происходящих в эритроцитах при поглащении или отдаче кровью кислорода и углекислого газа.

Гемоглобин и белки плазмы, являясь слабыми кислотами, образуют соли со щелочными металлами: в плазме с натрием, в эритроцитах с калием. Эти соли находятся в диссоциированном состоянии. Так как угольная кислота обладает более сильными кислотными свойствами, чем белки крови, то при ее взаимодействии с солями белков белок-анион связывается с катионом Н + , образуя при этом недиссоциированную молекулу, а ион НСО 3 - - образует с соответствующим катионом бикарбонат - в плазме бикарбонат натрия, а в эритроцитах бикарбонат калия. Эритроциты называют фабрикой бикарбонатов.

Регуляция дыхания

Потребность организма в кислороде, который необходим для процессов метаболизма, определяется той деятельностью, которую осуществляет организм в данный момент.

Регуляция вдоха и выдоха. Смене дыхательных фаз способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов. При перерезке блуждающих нервов дыхание у животных становится более редким и глубоким. Следовательно, импульсы, поступающие от рецепторов легких обеспечивают смену вдоха на выдох и смену выдоха вдохом.

В эпителиальном и субэпителиальном слоях всех воздухоносных путей, а также в области корней легких расположены так называемые ирритантные рецепторы, которые обладают одновременно свойствами механо- и хеморецепторов. Они раздражаются при сильных изменениях объема легких, часть этих рецепторов возбуждается при вдохе и выдохе. Ирритантные рецепторы возбуждаются также под действием пылевых частиц, паров едких веществ и некоторых биологически активных веществ, например, гистамина. Однако, для регуляции смены вдоха и выдоха большее значение имеют рецепторы растяжения легких, которые чувствительны к растяжению легких.

Во время вдоха, когда воздух начинает поступать в легкие, они растягиваются и рецепторы, чувствительные к растяжению возбуждаются. Импульсы от них по волокнам блуждающего нерва поступают в структуры продолговатого мозга к группе нейронов, составляющих дыхательный центр (ДЦ). Как показали исследовании в продолговатом мозге в его дорсальных и вентральных ядрах локализованы центр вдоха и выдоха. От нейронов центра вдоха возбуждение поступает к мотонейронам спинного мозга, аксоны которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие дыхательные мышцы. Сокращение этих мышц еще больше увеличивает объем грудной клетки, воздух продолжает поступать-в альвеолы, растягивая их. Поток импульсов в дыхательный центр от рецепторов легких увеличивается. Таким образом, вдох стимулируется вдохом.

Нейроны дыхательного центра продолговатого мозга как бы разделены (условно) на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают вдох, эта группа нейронов получила название инспираторных нейронов (инспираторный центр), т. е. центр вдоха. Другая же группа нейронов, отдающих волокна к внутренним межреберным,и; межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр), т. е. центр выдоха.

Нейроны экспираторного и инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше, поэтому его нейроны возбуждаются.при действии малой частоты импульсов, приходящих от рецепторов легких. Но по мере увеличения размеров альвеол во время вдоха, частота импульсов от рецепторов легких все больше и больше нарастает и на высоте вдоха она настолько велика, что становится пессимальной для нейронов центра вдоха, но оптимальной для нейронов центра выдоха. Поэтому нейроны центра вдоха тормозятся, а нейроны центра выдоха возбуждаются. Таким образом, регуляция смены вдоха и выдоха осуществляется той частотой, которая идет по афферентным нервным волокнам от рецепторов легких к нейронам дыхательного центра.

Помимо инспираторных и экспираторных нейронов в каудальной части варолиева моста обнаружена группа клеток, получающих возбуждения от инспираторных нейронов и тормозящих активность экспираторных нейронов. У животных с перерезкой ствола мозга через середину варолиева моста дыхание становится редким, очень глубоким с остановками на некоторое время в фазе вдоха, получивших название айпнезисов. Группа клеток, создающая подобный эффект, получила название апноэстического центра.

Дыхательный центр продолговатого мозга испытывает влияния со стороны вышележащих отделов ЦНС. Так, например, в передней части варолиева моста расположен пневмотаксический центр, который способствует периодической деятельности дыхательного центра, он увеличивает скорость развития инспираторной активности, повышает возбудимость механизмов выключения вдоха, ускоряет наступление следующей инспирации.

Гипотеза пессимального механизма смены фазы вдоха фазой выдоха не нашла прямого экспериментального подтверждения в опытах с регистрацией клеточной активности структур дыхательного центра. Эти эксперименты позволили установить сложную функциональную организацию последнего. По современным представлениям возбуждение клеток инспираторного отдела продолговатого мозга активирует деятельность апноэстического и пневмотаксического центров. Апноэстический центр тормозит активность экспираторных нейронов, пневмотаксический - возбуждает. По мере усиления возбуждения инспираторных нейронов под влиянием импульсации от механо- и хеморецепторов усиливается активность пневмотаксического центра. Возбуждающие влияния на экспираторные нейроны со стороны этого центра к концу фазы вдоха становятся преобладающими над тормозными, приходящими со стороны апноэстического центра. Это приводит к возбуждению экспираторных нейронов, оказывающих тормозящие влияния на инспираторные клетки. Вдох тормозится, начинается выдох.

По-видимому, существует самостоятельный механизм торможения вдоха и на уровне продолговатого мозга. К этому механизму относят специальные нейроны (I бета), возбуждаемые импульсами от механорецепторов растяжения легких и инспираторно-тормозные нейроны, возбуждаемые активностью нейронов I бета. Таким образом, при увеличении импульсации от механорецепторов легких увеличивается активность I бета нейронов, что в определенный момент времени (к концу фазы вдоха) вызывает возбуждение инспираторно-тормозных нейронов. Их активность тормозит работу инспираторных нейронов. Вдох сменяется выдохом.

В регуляции дыхания большое значение имеют центры гипоталамуса. Под влиянием центров гипоталамуса происходит усиление дыхания, например, при болевых раpдражениях, при эмоциональном возбуждении, при физической нагрузке.

В регуляции дыхания принимают участие полушария большого мозга, которые участвуют в тонком адекватном приспособлении дыхания к меняющимся условиям существования организма.

Нейроны дыхательного центра ствола мозга обладают автоматизмом, т. е. способностью к спонтанному периодическому возбуждению. Для автоматической деятельности нейронов ДЦ необходимо постоянное поступление к ним сигналов от хеморецепторов, а также от ретикулярной формации ствола мозга. Автоматическая деятельность нейронов ДЦ находится под выраженным произвольным контролем, который состоит в том, что человек может в широких пределах изменять частоту и глубину дыхания.

Деятельность дыхательного центра в значительной степени зависит от напряжения газов в крови и концентрации в ней водородных ионов. Ведущее значение в определении величины легочной вентиляции имеет напряжение углекислого газа в артериальнои-крови, оно как бы создает запрос на нужную величину вентиляции альвеол.

Содержание кислорода и особенно углекислого газа поддерживается на относительно постоянном уровне. Нормальное содержание кислорода в организме называется нормоксия, недостаток кислорода в организме и тканях - гипоксия, а недостаток кислорода в крови - гипоксемия. Увеличение напряжения кислорода в крови называется гипероксия.

Нормальное содержание углекислого газа в крови называется нормокапния, повышение содержания углекислого газа - гиперкапния, а снижение его содержания - гипокапния.

Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких - гиперпноэ, что приводит к выделению из организма избытка углекислого газа. увеличение вентиляции легких происходит за счет увеличения глубины и частоты дыхания.

Гипокапния и повышение уровня рН крови приводит к уменьшению вентиляции легких, а затем и к остановке дыхания - апноэ.

Углекислый газ, водородные ионы и умеренная гипоксия вызывают усиление дыхания за счет усиления деятельности дыхательного центра, оказывая влияние на специальные хеморецепторы. Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и в дуге аорты. Артериальные хеморецепторы расположены в специальных маленьких тельцах, которые богато снабжены артериальной кровью. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы, особенно каротидных телец, информируют дыхательный центр о напряжении кислорода и углекислого газа в крови, которая направляется к мозгу.

В продолговатом мозге обнаружены центральные хеморецепторы, которые постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Они существенно изменяют вентиляцию легких Например, снижение рН спиномозговой жидкости на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови. Последний является жесткой константой внутренней среды организма и поддерживается по принципу саморегуляции путем формирования функциональной системы дыхания. Системообразующим фактором этой системы является газовая константа крови. Любые ее изменения являются стимулами для возбуждения рецепторов, расположенных в альвеолах легких, в сосудах, во внутренних органах и т. д. Информация от рецепторов поступает в ЦНС, где осуществляется ее анализ и синтез, на основе которых формируются аппараты реакций. Их совокупная деятельность приводит к восстановлению газовой константы крови. В процесс восстановления этой константы включаются не только органы дыхания (особенно ответственные за изменение глубины и частоты дыхания), но и органы кровообращения, выделения и другие, представляющие в совокупности внутреннее звено саморегуляции. При необходимости включается и внешнее звено в виде определенных поведенческих реакций, направленных на достижение общего полезного результата - восстановление газовой константы крови.

Пищеварение

В процессе жизнедеятельности организма непрерывно расходуются питательные вещества, которые выполняют пластическую и энергетическую функцию. Организм испытывает постоянную потребность в питательных веществах, к которым относятся: аминокислоты, моносахара, глицин и жирные кислоты. Состав и количество питательных веществ в крови является физиологической константой, которая поддерживается функциональной системой питания. В основе формирования функциональной системы лежит принцип саморегуляции.

Источником питательных веществ являются различные продукты питания, состоящие из сложных белков, жиров и углеводов, которые в процессе пищеварения превращаются в более простые вещества, способные всасываться. Процесс расщепления сложных пищевых веществ под действием ферментов на простые химические соединения, которые всасываются, транспортируются к клеткам и используются ими называется пищеварением. Последовательная цепь процессов приводящая к расщеплению пищевых веществ до мономеров, способных всасываться - называется пищеварительным конвейером. Пищеварительный конвейер - это сложный химический конвейер с выраженной преемственностью процессов переработки пищи во всех отделах. Пищеварение является главным компонентом функциональной системы питания.

Процесс пищеварения осуществляется в желудочно-кишечном тракте, который представляет собой пищеварительную трубку вместе с железистыми образованиями. Желудочно-кишечный тракт выполняет следующие функции:

Двигательная или моторная функция, осуществляется за счет мускулатуры пищеварительного аппарата и включает в себя процессы жевания в полости рта, глотания, перемещения химуса по пищеварительному тракту и удаление из организма непереваренных остатков.

Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного сока, сока поджелудочной железы, кишечного сока, желчи. Эти соки содержат ферменты, которые расщепляют белки, жиры и углеводы на простые химические соединения. Минеральные соли, витамины, вода поступают в кровь в неизменном виде.

Инкреторная функция связана с образованием в пищеварительном тракте некоторых гормонов, которые оказывают воздействие на процесс пищеварения. К таким гормонам относятся: гастрин, секретин, холецистокинин-панкреозимин, мотилин и многие другие гормоны, которые влияют на моторную и секреторную функции желудочно-кишечного тракта.

Экскреторная функция пищеварительного тракта выражается в том, что пищеварительные железы выделяют в полость желудочно-кишечного тракта продукты обмена, например, аммиак, мочевину и др., соли тяжелых металлов, лекарственные вещества, которые затем удаляются из организма.

Всасывательная функция. Всасывание - это проникновение различных веществ через стенку желудочно-кишечного тракта в кровь и лимфу. Всасыванию подвергаются в основном продукты гидролитического расщепления пищи - моносахара, жирные кислоты и глицерин,аминокислоты и др. В зависимости от локализации процесса пищеварения его делят на внутриклеточное и внеклеточное.

Внутриклеточное пищеварение - это гидролиз пищевых веществ, которые попадают внутрь клетки в результате фагоцитоза или пиноцитоза. Эти пищевые вещества гидролизуются клеточными (лизосомальными) ферментами либо в цитозоле, либо в пищеварительной вакуоли, на мембране которой фиксированы ферменты. В организме человека внутриклеточное пищеварение имеет место в лейкоцитах и в клетках лимфо-ретикуло-гистиоцитарной системы.

Внеклеточное пищеварение делится на дистантное (полостное) и контактное (пристеночное, мембранное).

Дистантное (полостное) пищеварение характеризуется тем, что ферменты в составе пищеварительных секретов осуществляют гидролиз пищевых веществ в полостях желудочно-кишечного тракта. Дистантным оно называется потому, что сам процесс пищеварения осуществляется на значительном расстоянии от места образования ферментов.

Контактное (пристеночное, мембранное) пищеварение осуществляется ферментами, фиксированными на клеточной мембране. Структуры, на которых фиксированы ферменты, представлены в тонком отделе кишечника гликокаликсом - сетевидным образованием из отростков мембраны микроворсинок. Первоначально гидролиз пищевых веществ начинается в просвете тонкой кишки под влиянием ферментов поджелудочной железы. Затем образовавшиеся олигомеры гидролизуются в зоне гликокаликса, адсорбированными здесь ферментами поджелудочной железы. Непосредственно у мембраны гидролиз образовавшихся димеров производят фиксированные на ней собственно кишечные ферменты. Эти ферменты синтезируются в энтероцитах и переносятся на мембраны их микроворсинок. Наличие в слизистой оболочке тонкой кишки складок, ворсинок, микроворсинок увеличивает внутреннюю поверхность кишки в 300-500 раз, что обеспечивает гидролиз и всасывание на огромной поверхности тонкой кишки.

В зависимости от происхождения ферментов пищеварение делится на три типа:

аутолитическое - осуществляется под влиянием ферментов, содержащихся в пищевых продуктах;

симбионтное - под влиянием ферментов, которые образуют симбионты (бактерии, простейшие) макроорганизма;

собственное - осуществляется ферментами, которые синтезируются в данном макроорганизме.

Пищеварение в желудке

Функции желудка. Пищеварительными функциями желудка являются:

Депонирование химуса (содержимого желудка);

Механическая и химическая переработка поступающей пищи;

Эвакуация химуса в кишечник.

Кроме того, желудок осуществляет гомеостатическую функцию (например, поддержание рН и др.) и участвует в кроветворении (выработка внутреннего фактора Кастла).

15362 0

Важной стороной функции почки, которая раньше неодооценивалась, является ее участие в гомеостазе белков, углеводов и липидов. Участие почки в метаболизме органических веществ отнюдь не ограничено способностью к реабсорбции этих соединений или экскреции их избытка. В почке образуются новые и разрушаются различные пептидные гормоны, циркулирующие в крови, происходят потребление низкомолекулярных органических веществ (глюкоза, аминокислоты, свободные жирные кислоты и др.) и образование глюкозы (глюконеогенез), процессы превращения аминокислот, например глицина в серин, необходимый для синтеза фосфатидилсерина, участвующего в образовании и обмене плазматических мембран в различных органах .

Следует разграничить понятия «метаболизм почки» и «метаболическая функция почки». Метаболизм, обмен веществ в почке, обеспечивает выполнение всех ее функций. В этом разделе не будут обсуждаться вопросы, касающиеся особенностей биохимических процессов почечных клеток. Речь пойдет только о некоторых сторонах деятельности почки, которые обеспечивают одну из ее важнейших гомеостатических функций, связанную с поддержанием стабильного уровня в жидкостях внутренней среды ряда компонентов углеводного, белкового и липидного обмена.

Участие в обмене белков

Ранее уже отмечалось, что фильтрующая мембрана клубочка практически непроницаема для альбуминов и глобулинов, но через нее свободно фильтруются низкомолекулярные пептиды. Тем самым в канальцы непрестанно поступают гормоны — инсулин, вазопрессин, ПГ, АКТГ, ангиотензин, гастрин и др. Расщепление до аминокислот этих физиологически активных пептидов имеет двоякое функциональное значение - в кровь поступают аминокислоты, используемые для синтетических процессов в различных органах и тканях, и организм непрерывно освобождается от поступивших в кровоток биологически активных соединений, что улучшает точность регуляторных влияний.

Снижение функциональной способности почки к удалению этих веществ приводит к тому, что при почечной недостаточности может наступить гипергаспринемия, появляется избыток в крови ПГ (помимо увеличения его секреции). Вследствие замедления инактивации инсулина в почке у больных диабетом при развитии почечной недостаточности может снижаться потребность в инсулине. Нарушение процесса реабсорбции и расщепления низкомолекулярных белков приводит к появлению канальцевой протеинурии. При НС, наоборот, протеинурия обусловлена увеличением фильтрации белков; низкомолекулярные белки при этом по-прежнему реабсорбируются, а в мочу поступают альбумины и крупномолекулярные белки.

Канальцевая реабсорбция отдельных аминокислот, расщепление и реабсорбция полипептидов, всасывание белков путем эндоцитоза - каждый из этих процессов насыщаем, т. е. имеет свою величину Тm. Это подтверждает представление о различии механизмов всасывания отдельных категорий белков. Существенное значение имеет большая скорость фильтрации в клубочках денатурированных альбуминов по сравнению с нативными. Весьма вероятно, что это служит одним из механизмов элиминации из крови, расщепления клетками канальцев и использования аминокислот тех белков, которые изменились, стали функционально неполноценными. Есть сведения о возможности извлечения некоторых белков и полипептидов клетками нефрона из околоканальцевой жидкости и их последующего катаболизма. К ним относятся, в частности, инсулин и β2-μ-глобулин.

Таким образом, почка играет важную роль в расщеплении низкомолекулярных и измененных (в том числе денатурированных) белков. Это объясняет значение почки в восстановлении фонда аминокислот для клеток органов и тканей, в быстром устранении из крови физиологически активных веществ и сохранении для организма их компонентов.

Участие в обмене углеводов

Наряду с фильтрацией и реабсорбцией профильтровавшейся глюкозы почка не только потребляет ее в процессе обмена, но и способна к значительной продукции глюкозы. В обычных условиях скорости этих процессов равны. На утилизацию глюкозы для выработки энергии в почке идет около 13% общего потребления кислорода почкой. Глюконеогенез происходит в коре почки, а наибольшая активность гликолиза характерна для ее мозгового вещества. В процессе обмена в почке глюкоза может окисляться до СО2 или превращаться в молочную кислоту. Гомеостатическое значение ведущих биохимических путей превращения глюкозы в почке можно показать на примере метаболизма глюкозы при сдвигах КЩС.

При хроническом метаболическом алкалозе потребление почкой глюкозы возрастает в несколько раз по сравнению с хроническим метаболическим ацидозом. Существенно, что окисление глюкозы не зависит от КЩС, а увеличение pH способствует сдвигу реакций в направлении образования молочной кислоты.

Почка обладает весьма активной системой образования глюкозы; интенсивность глюконеогенеза при расчете на 1 г массы тючки значительно больше, чем в печени. Метаболическая функция почки, связанная с ее участием в углеводном обмене, проявляется в том, что при длительном голодании почки образуют половину общего количества глюкозы, поступающей в кровь. Превращение кислых предшествеников, субстратов в глюкозу, являющуюся нейтральным веществом, одновременно способствует регуляции pH крови. При алкалозе, наоборот, уменьшен глюконеогенез из кислых субстратов. Зависимость скорости и характера глюконеогенеза от величины pH отличает углеводный обмен почки от такового печени.

В почке изменение скорости образования глюкозы сопряжено с изменением активности ряда ферментов, играющих ключевую роль в глюконеогенезе. Среди них в первую очередь следует назвать фосфоенолпируваткарбоксикиназу, пируваткарбоксилазу, глюкозо-6-фосфатазу и др.

Особенно важно, что организм способен к локальному изменению активности ферментов при генерализованных реакциях. Так, при ацидозе увеличивается активность фосфонолпируваткарбоксикиназы только в коре почки; в печени активность такого же фермента не меняется. В условиях ацидоза в почке возрастает глюконеогенез преимущественно из тех предшественников, которые участвуют в образовании щавелевоуксусной кислоты (оксалацетат). С помощью фосфоенолпируваткарбоксикиназы он превращается в фосфоенолпируват (далее - d-глицеральдегид-3 РО4, фруктоза-1,6-дифосфат, фруктоза-6 РО4); наконец, глюкозу-6 РО4, из которой с помощью глюкозо-6-фосфатазы освобождается глюкоза.

Сущность активации ключевого фермента, обеспечивающего усиление образования глюкозы при ацидозе, - фосфоенолпируваткарбоксикиназы, по-видимому, заключается в том, что при ацидозе происходит превращение мономерных форм этого фермента в активную димерную форму, а также замедляется процесс разрушения фермента.

Важную роль в регуляции скорости глюконеогенеза в почке играют гормоны (ПГ, глюкагон) и медиаторы, увеличивающие образование цАМФ в клетках канальцев. Этот посредник способствует усилению процессов превращения в митохондриях ряда субстратов (глутамин, сукцинат, лактат и др.) в глюкозу. Важное значение в регуляции имеет содержание ионизированного кальция, который участвует в увеличении митохондриального транспорта ряда субстратов, обеспечивающих образование глюкозы.

Превращение различных субстратов в глюкозу, поступающую в общий кровоток и доступную для утилизации в различных органах и тканях, свидетельствует о том, что почке присуща важная функция, связанная с участием в энергетическом балансе организма.

Интенсивная синтетическая активность некоторых клеток почки зависит, в частности, от состояния углеводного обмена. В почке высокая активность глюкозо-6-фосфатдегидрогеназы свойственна клеткам macula densa, проксимального канальца и части петли Генле. Этот фермент играет важнейшую роль в окислении глюкозы по гексозомонофосфатному шунту. Он активизируется при уменьшении содержания натрия в организме, что приводит, в частности, к интенсификации синтеза и секреции ренина.

Почка оказалась основным органом окислительного катаболизма инозитола. В ней миоинозитол окисляется в ксилулозу и затем через ряд стадий - в глюкозу. В ткани почки синтезируется фосфатидилинозитол - необходимый компонент плазматических мембран, в значительной степени определяющий их проницаемость. Синтез глюкуроновой кислоты важен для образования кислых мукополисахаридов; их много в интерстиции внутреннего мозгового вещества почки, что существенно для процесса осмотического разведения и концентрирования мочи.

Участие в обмене липидов

Свободные жирные кислоты извлекаются почкой из крови и их окисление в значительной степени обеспечивает функцию почки. Так как свободные жирные кислоты связаны в плазме с альбумином, то они не фильтруются, а поступают в клетки нефрона со стороны межклеточной жидкости; перенос через мембрану (клетки связан со специальным механизмом транспорта. Окисление этих соединений происходит больше в коре почки, чем в ее мозговом веществе.

Помимо участия свободных жирных кислот в энергетическом обмене почки, в ней происходит образование триацилглицеринов. Свободные жирные кислоты быстро включаются в фосфолипиды почки, играющие важную роль в различных транспортных процессах. Роль почки в липидном обмене состоит в том, что в ее ткани свободные жирные кислоты включаются в состав триацилглицеринов и фосфолипидов и в виде этих соединений участвуют в циркуляции.

Клиническая нефрология

под ред. Е.М. Тареева

1. Образование активной формы витамина D 3 . В почках в результате микросомального окисления происходит заключительный этап созревания активной формы витамина D 3 – 1,25-диоксихолекальциферола , который синтезируется в коже под действием ультрафиолетовых лучей из холестерина, и затем гидроксилируется: сначала в печени (в положении 25), а затем в почках (в положении 1). Таким образом, участвуя в образовании активной формы витамина D 3 , почки оказывают влияние на фосфорно-кальциевый обмен в организме. Поэтому при заболеваниях почек, когда нарушаются процессы гидроксилирования витамина D 3 , может развиться остеодистрофия.

2. Регуляция эритропоэза. В почках вырабатывается гликопротеин, названный почечным эритропоэтическим фактором (ПЭФ или эритропоэтин ). Это гормон, который способен оказывать воздействие на стволовые клетки красного костного мозга, являющиеся клетками-мишенями для ПЭФ. ПЭФ направляет развитие этих клеток по пути эритропоэза, т.е. стимулирует образование эритроцитов. Скорость выделения ПЭФ зависит от обеспечения почек кислородом. Если количество поступающего кислорода снижается, то увеличивается выработка ПЭФ – это ведет к увеличению количества эритроцитов в крови и улучшению снабжения кислородом. Поэтому при заболеваниях почек иногда наблюдается почечная анемия.

3. Биосинтез белков. В почках активно идут процессы биосинтеза белков, которые необходимы другим тканям. Здесь синтезируются также компоненты системы свертывания крови, системы комплемента и системы фибринолиза.

В почках синтезируются фермент ренин и белок кининоген, участвующие в регуляции сосудистого тонуса и артериального давления.

4. Катаболизм белков. Почки участвуют в катаболизме некоторых белков, имеющих низкую молекулярную массу (5-6 кДа), и пептидов, которые фильтруются в первичную мочу. Среди них гормоны и некоторые другие биологически активные вещества. В клетках канальцев под действием лизосомальных протеолитических ферментов эти белки и пептиды гидролизуются до аминокислот, которые затем поступают в кровь и реутилизируются клетками других тканей.

Большие затраты АТФ почками связаны с процессами активного транспорта при реабсорбции, секреции, а также с биосинтезом белков. Основной путь получения АТФ – это окислительное фосфорилирование. Поэтому ткань почки нуждается в значительных количествах кислорода. Масса почек составляет 0,5% от общей массы тела, а потребление кислорода почками - 10% от всего поступающего кислорода.

7.4. РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО ОБМЕНА
И МОЧЕОБРАЗОВАНИЯ

Объем мочи и содержание ионов в ней регулируется благодаря сочетанному действию гормонов и особенностям строения почки.


Ренин-ангиотензин-альдостероновая система . В почках, в клетках юкстагломерулярного аппарата (ЮГА), синтезируется ренин – протеолитический фермент, который участвует в регуляции сосудистого тонуса, превращая ангиотензиноген в декапептид ангиотензин I путем частичного протеолиза. Из ангиотензина I под действием фермента карбоксикатепсина образуется (тоже путем частичного протеолиза) октапептид ангиотензин II. Он обладает сосудосуживающим эффектом, а также стимулирует выработку гормона коры надпочечников - альдостерона.

Альдостерон – это стероидный гормон коры надпочечников из группы минералкортикоидов, который обеспечивает усиление реабсорбции натрия из дистальной части почечного канальца благодаря активному транспорту. Он начинает активно секретироваться при значительном снижении концентрации натрия в плазме крови. В случае очень низких концентраций натрия в плазме крови под действием альдостерона может происходить практически полное удаление натрия из мочи. Альдостерон усиливает реабсорбцию натрия и воды в почечных канальцах – это приводит к увеличению объёма крови, циркулирующей в сосудах. В результате повышается артериальное давление (АД) (рис. 19).

Рис. 19. Ренин-ангиотензин-альдостероновая система

Когда молекула ангиотензина-II выполнит свою функцию, она подвергается тотальному протеолизу под действием группы специальных протез – ангиотензиназ.

Выработка ренина зависит от кровоснабжения почек. Поэтому при снижении АД выработка ренина увеличивается, а при повышении – снижается. При патологии почек иногда наблюдается повышенная выработка ренина и может развиваться стойкая гипертензия (повышение АД).

Гиперсекреция альдостерона приводит к задержке натрия и воды – затем развивается отек и гипертония, вплоть до сердечной недостаточности. Недостаточность альдостерона приводит к значительной потере натрия, хлоридов и воды и уменьшению объема плазмы крови. В почках одновременно нарушаются процессы секреции H + и NH 4 + , что может приводить к ацидозу.

Ренин-ангиотензин-альдостероновая система работает в тесном контакте с другой системой регуляции сосудистого тонуса калликреин-кининовой системой , действие которой приводит к понижению АД (рис. 20).

Рис. 20. Калликреин-кининовая система

В почках синтезируется белок кининоген. Попадая в кровь, кининоген под действием сериновых протеиназ - калликреинов превращается в вазоактиные пептиды - кинины: брадикинин и каллидин. Брадикинин и каллидин обладают сосудорасширяющим эффектом – понижают АД.

Инактивация кининов происходит при участии карбоксикатепсина – этот фермент одновременно влияет на обе системы регуляции сосудистого тонуса, что приводит к повышению АД (рис. 21). Ингибиторы карбоксикатепсина применяются в лечебных целях при лечении некоторых форм артериальной гипертензии. Участие почек в регуляции АД связано также с выработкой простагландинов, которые обладают гипотензивным эффектом.

Рис. 21. Взаимосвязь ренин-ангиотензин-альдостероновой
и калликреин-кининовой систем

Вазопрессин – пептидный гормон, синтезируемый в гипоталамусе и секретируемый из нейрогипофиза, имеет мембранный механизм действия. Этот механизм в клетках-мишенях реализуется через аденилатциклазную систему. Вазопрессин вызывает сужение периферических сосудов (артериол), в результате повышается АД. В почках вазопрессин повышает скорость реабсорбции воды из начальной части дистальных извитых канальцев и собирательных трубочек. В результате увеличивается относительная концентрация Na, C1, P и общего N. Секреция вазопрессина увеличивается при повышении осмотического давления плазмы крови, например, при повышении потребления соли или обезвоживании организма. Считается, что действие вазопрессина связано с фосфорилированием белков апикальной мембраны почки, в результате чего увеличивается ее проницаемость. При поражении гипофиза, в случае нарушения секреции вазопрессина наблюдается несахарный диабет – резкое увеличение объема мочи (до 4-5 л) с низким удельным весом.

Натрийуретический фактор (НУФ) – пептид, который образуется в клетках предсердия в гипоталамусе. Это гормоноподобное вещество. Его мишени – клетки дистального отдела почечных канальцев. НУФ действует через гуанилатциклазную систему, т.е. внутриклеточным посредником его является цГМФ. Результатом влияния НУФ на клетки канальцев является снижение реабсорбции Na + , т.е. развивается натрийурия.

Паратгормон – гормон паращитовидной железы белково-пептидной природы. Он имеет мембранный механизм действия через цАМФ. Влияет на удаление солей из организма. В почках паратгормон усиливает канальцевую реабсорбцию Ca 2+ и Mg 2+ , увеличивает экскрецию К + , фосфата, НСО 3 - и уменьшает экскрецию H + и NH 4 + . В основном это происходит благодаря снижению канальцевой реабсорбции фосфата. Одновременно в плазме увеличивается концентрация кальция. Гипосекреция паратгормона приводит к обратным явлениям – увеличению содержания фосфатов в плазме крови и к снижению содержания Ca 2+ в плазме.

Эстрадиол – женский половой гормон. Стимулирует синтез
1,25-диоксикальциферола, усиливает реабсорбцию кальция и фосфора в почечных канальцах.

На задержку некоторого количества воды в организме оказывает гормон надпочечников кортизон . В этом случае происходит задержка выделения из организма ионов Na и как следствие – задержка воды. Гормон тироксин приводит к падению массы тела за счет усиленного выделения воды, главным образом через кожу.

Эти механизмы находятся под контролем ЦНС. В регуляции водного обмена участвуют промежуточный мозг и серый бугор мозга. Возбуждение коры головного мозга приводит к изменению работы почек в результате либо прямой передачи соответствующих импульсов по нервным путям, либо путем возбуждения некоторых эндокринных желез, в частности, гипофиза.

Нарушения водного баланса при различных патологических состояниях могут приводить либо к задержке воды в организме, либо к частичному обезвоживанию тканей. Если задержка воды в тканях имеет хронический характер, обычно развиваются различные формы отёков (воспалительные, солевые, голодные).

Патологическое обезвоживание тканей обычно является следствием выделения через почки повышенного количества воды (до 15-20 л мочи в сутки). Такое усиленное мочеотделение, сопровождающееся сильнейшей жаждой, наблюдается при несахарном диабете (diabetes insipidus). У больных, страдающих несахарным диабетом на почве недостатка гормона вазопрессина, почки утрачивают способность концентрировать первичную мочу; моча становится очень разбавленной и имеет низкий удельный вес. Однако ограничение питья при этом заболевании может провести к несовместимому с жизнью обезвоживанию тканей.

Контрольные вопросы

1. Охарактеризуйте экскреторную функцию почек.

2. В чем заключается гомеостатическая функция почек?

3. Какую метаболическую функцию выполняют почки?

4. Какие гормоны участвуют в регуляции осмотического давления и объема внеклеточной жидкости?

5. Опишите механизм действия ренин-ангиотензиновой системы.

6. В чем заключается взаимосвязь ренин-альдостерон-ангиотензиновой и калликреин-кининовой систем?

7. Какие нарушения гормональной регуляции могут быть причиной гипертензии?

8. Укажите причины задержки воды в организме.

9. Что является причиной несахарного диабета?

Почки — это настоящая биохимическая лаборатория, в которой проходит множество различных процессов. В результате происходящих в почках химических реакций они обеспечивают освобождение организма от продуктов жизнедеятельности, а также участвуют в образовании необходимых нам веществ.

Биохимические процессы в почках

Эти процессы можно поделить на три группы:

1. Процессы образования мочи,

2. Выделение некоторых веществ,

3. Регулирование продукции веществ нужных для поддержания водно-солевого и кислотно-щелочного баланса.

В связи с этими процессами почки выполняют следующие функции:

  • Экскреторная функция (выведение веществ из организма),
  • Гомеостатическая функция (поддержание баланса организма),
  • Метаболическая функция (участие в обменных процессах и синтез веществ).

Все эти функции тесно взаимосвязаны, и сбой в одной из них может привести к нарушению остальных.

Экскреторная функция почек

Эта функция связана с образованием мочи и выведением ее из организма. Когда кровь проходит через почки, из компонентов плазмы образуется моча. При этом, почки могут регулировать ее состав в зависимости от конкретного состояния организма и его потребностей.

С мочой почки выводят из организма:

  • Продукты азотистого обмена: мочевую кислоту, мочевину, креатинин,
  • Избыток веществ, например, воду, органические кислоты, гормоны,
  • Чужеродные вещества, например, лекарства, никотин.

Основные биохимические процессы, обеспечивающие выполнение почками их экскреторной функции, — это процессы ультрафильтрации. Кровь через почечные сосуды попадает в полость почечных клубочков, где проходит через 3 слоя фильтров. В результате образуется первичная моча. Ее количество довольно велико, и в ней еще содержаться нужные организму вещества. Далее она поступает на дополнительную переработку в проксимальных канальцах, где подвергается реабсорбции.

Реабсорбция — это продвижение веществ из канальца в кровь, то есть их возвращение обратно из первичной мочи. В среднем у человека в почках за сутки образуется до 180 литров первичной мочи, а выводится всего 1-1,5 литра вторичной мочи. Именно в этом количестве выводимой мочи и содержится всё, что необходимо удалить из организма. Реабсорбции подвергаются такие вещества как белки, аминокислоты, витамины, глюкоза, некоторые микроэлементы, электролиты. В первую очередь обратному всасыванию подвергается вода, а вместе с ней возвращаются и растворенные вещества. Благодаря сложной системе фильтрации в здоровом организме в мочу не попадают белки, глюкоза, то есть их обнаружение в лабораторных анализах говорит о неблагополучии и необходимости выяснения причины и лечения.

Гомеостатическая функция почек

Благодаря этой функции почки поддерживают в организме водно-солевой и кислотно-щелочной баланс.

Основа регулирования водно-солевого баланса — это количество поступающей жидкости и солей, количество выводимой мочи (то есть жидкости с растворенными в ней солями). При избытке натрия и калия повышается осмотическое давление, из-за этого раздражаются осмотические рецепторы, и у человека возникает жажда. Объем выводимой жидкости при этом сокращается, а концентрация мочи увеличивается. При избытке жидкости увеличивается объем крови, и концентрация солей уменьшается, осмотическое давление падает. Это сигнал для почек работать активнее, чтобы вывести излишки воды и восстановить баланс.
Процесс поддержания нормального кислотно-щелочного баланса (pH) осуществляют буферные системы крови и почки. Изменение этого баланса в ту или другую сторону приводит к изменению работы почек. Процесс регулировки этого показателя состоит из двух частей.

Во-первых, это изменение состава мочи. Так, при увеличении кислотной составляющей крови увеличивается и кислотность мочи. Повышение содержания щелочных веществ ведет к образованию мочи щелочного характера.

Во-вторых, при изменении кислотно-щелочного баланса почки выделяют вещества, которые нейтрализуют излишки веществ, приводящие к дисбалансу. Например, при повышении кислотности увеличивается секреция Н+, ферментов глутаминазы и глутаматдегидрогеназы, пируваткарбоксилазы.

Почки регулируют фосфорно-кальциевый обмен, поэтому при нарушении их функций может страдать опорно-двигательный аппарат. Данный обмен регулируется через образование активной формы витамина D3, который сначала образуется в коже, а потом гидроксилируется в печени, потом, окончательно, в почках.

Почки вырабатывают гормон гликопротеин, называемый эритропоэтином. Он оказывает действие на стволовые клетки костного мозга и стимулирует образование из них эритроцитов. Скорость этого процесса зависит от количества кислорода, поступающего в почки. Чем его меньше, тем активнее образуется эритропоэтин, чтобы благодаря большему количеству эритроцитов обеспечить организм кислородом.

Еще одна важная составляющая метаболической функции почек — ренин-ангиотензин-альдостероновая система. Фермент ренин регулирует сосудистый тонус и превращает ангиотензиноген путем многоступенчатых реакций в ангиотензин II. Ангиотензин II оказывает сосудосуживающее действие и стимулирует выработку корой надпочечников альдостерона. Альдостерон, в свою очередь, усиливает реабсорбцию натрия и воды, что увеличивает объем крови и кровяное давление.

Таким образом, от количества ангиотензина II и альдостерона зависит кровяное давление. Но процесс этот работает как бы по кругу. От кровоснабжения почек зависит выработка ренина. Чем ниже давление, тем меньше поступает крови в почки и больше вырабатывается ренина, а значит и ангиотензина II и альдостерона. В этом случае давление повышается. При повышенном давлении ренина образуется меньше, соответственно давление снижается.

Поскольку почки участвуют во многих процессах в нашем организме, проблемы, возникающие в их работе, неизбежно сказываются на состоянии и работе различных систем, органов и тканей.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции