11.03.2020

Пептиды гипоталамуса. Либерины и статины. Вазопрессин и окситоцин, их роль в организме. Гормоны окситоцин и вазопрессин: лучшая защита от супружеской неверности Окситоцин и вазопрессин синтезируются в гипоталамусе



Гормоны вазопрессин и окситоцин синтезируются в гипоталамусе одновременно с тремя белками: нейрофизин I, II и III, функция которых заключается в нековалентном связывании окситоцина и вазопрессина и транспорте этих гормонов в нейросекреторные гранулы гипоталамуса. Далее в виде комплексов нейрофизин-гормон они мигрируют вдоль аксона и достигают задней доли гипофиза, где откладываются про запас; в кровь гормон выделяется после диссоциации комплекса. Нейрофизины также выделены в чистом виде, и выяснена первичная структура двух из них; это богатые цистеином белки, содержащие по семь дисульфидных связей.

Химическое строение гормонов было расшифровано классическими работами В. дю Виньо и сотр., впервые выделивших эти гормоны (1953) из задней доли гипофиза и осуществивших их химический синтез. Оба гормона представляют собой нонапептиды (9 аминокислотных остатков), отличающиеся двумя аминокислотами.

Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышц волокон сосудов, вызывая сильное вазопрессорное действие, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. В небольших концентрациях (0,2 нг на 1 кг массы тела) вазопрессин оказывает мощное антидиуретическое действие – стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При атрофии задней доли гипофиза развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой (полиурия) . При этом нарушен обратный процесс всасывания воды в канальцах почек.

Относительно механизма действия нейрогипофизарных гормонов известно, что гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему. Однако конкретный механизм действия вазопрессина на транспорт воды в почках остается неясным.

Адренокортикотропный гормон (АКТГ, кортикотропин)

Еще в 1926 году было установлено, что гипофиз оказывает стимулирующее влияние на надпочечники, повышая синтез и выделение гормонов коркового вещества.

Молекула АКТГ у всех видов животных содержит 39 аминокислотных остатков. В молекуле АКТГ, как и других белковых гормонов, хотя и не открыты активные центры наподобие активных центров ферментов, однако предполагается наличие двух активных участков пептидной цепи, один из которых ответственен за связывание с соответствующим рецептором, другой – за гормональный эффект.

Данные о механизме действия АКТГ на синтез стероидных гормонов свидетельствуют о существенной роли аденилатциклазной системы. Предполагают, что АКТГ вступает во взаимодействие со специфическими рецепторами на внешней поверхности клеточной мембраны. Сигнал затем передается на фермент аденилатциклазу, расположенную на внутренней поверхности клеточной мембраны, которая катализирует распад АТФ и образование цАМФ. Последний активирует протеинкиназу, которая в свою очередь с участием АТФ осуществляет фосфорилирование холинэстеразы, превращающей эфиры холестерина в свободный холестерин, который поступает в митохондрии надпочечников, где содержатся все ферменты, катализирующие превращение холестерина в кортикостероиды.

Действие АКТГ опосредовано корой надпочечников, то есть он вызывает все те ответные реакции, которые характерны для действия кортикостероидов. Глюконеогенез ускоряется, а синтез белка замедляется во всех исследованных тканях, за исключением печени. Происходит мобилизация липидов (которые поступают в печень), сопровождающаяся кетонемией и гиперхолестеринемией. Стимулируется реабсорбция воды и солей почками, однако в меньшей степени, чем при действии альдостерона. Введение АКТГ вызывает лимфопению, эозинопению и усиление эритропоэза. Продолжительное введение АКТГ может вызывать нежелательные проявления гиперфункции коры надпочечников, включая маскулинизацию (появление у женщин мужских признаков), обусловленную влиянием андрогенов.

Соматотропный гормон (СТГ, гормон роста, соматотропин)

Гормон роста был открыт в экстрактах передней доли гипофиза еще в 1921 году, однако в химически чистом виде был получен только в 1956-1957 годах. СТГ синтезируется в клетках передней доли гипофиза; концентрация его в гипофизе составляет 5-15 мг на 1 г ткани, что в 1000 раз превышает концентрацию других гормонов гипофиза. К настоящему времени выяснена полностью первичная структура белковой молекулы СТГ человека, быка и овцы. СТГ человека состоит из 191 аминокислоты и содержит две дисульфидные связи.

СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особые белковые факторы , образующиеся в печени, мышцах и почках под влиянием гормона. По крайней мере шесть полипептидов с активностью соматомединов («соматомедин», т.е. медиатор действия СТГ в организме) были выделены из плазмы крови человека. Первый идентифицированный факторбыл назван сульфирующим, или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина в ДНК, уридина в РНК и пролина – в коллаген. По своей природе эти факторы оказались пептидами с мол. массой порядка 7000.

Многогранный характер действия СТГ (в отличие от действия других аденогипофизарных гормонов) не обусловлен влиянием на другие эндокринные железы (!).

Введение СТГ вызывает следующие изменения в метаболизме:

1. Стимулирование синтеза РНК и белков в печени и периферических тканях, сопровождающееся задержкой азота (анаболическое действие гормона).

2. Повышение уровня глюкозы в крови; этому предшествует быстро наступающая острая гипогликемия, обусловленная освобождением инсулина из поджелудочной железы (панкреотропный эффект). Продолжительное введение гормона роста вызывает глюкозурию, а также усиливает проявления сахарной болезни (диабетогенный эффект).

3. Увеличение содержания гликогена в мышцах и сердце (глюкостатический эффект) вследствие прямого действия гормона на эти ткани.

4. Двухфазное изменение содержания в плазме неэтерифицированных (свободных) жирных кислот; после быстро наступающего снижения происходит повышение их уровня. Продолжительное введение гормона роста вызывает кетонемию, кетонурию, а также увеличение содержания в печени липидов, обусловленное мобилизацией липидов из депо. Этот эффект является результатом прямого действия соматотропина на жировую ткань (липидмобилизующий эффект).

5. Увеличение размера почек и усиление их функции; увеличение клеточного клиренса и канальцевой экскреции (ренотропный эффект).

6. Стимулирование ретикулоцитоза (эритропоэтический эффект).

7. Стимулирование секреции молока (лактопоэтический эффект).

8. Стимулирование хондрогенеза и остеогенеза.

СТГ регулирует процессы роста и развития всего организма, что подтверждается клиническими наблюдениями. Так при гипофизарной карликовости (пангипопитуитаризм) отмечается пропорциональное недоразвитие тела, в том числе скелета, хотя существенных отклонений в развитии психической деятельности не наблюдается. У взрослого человека также развивается ряд нарушений, связанных с гипо- или гиперфункцией гипофиза. Известно заболевание акромегалия, характеризующееся непропорционально интенсивным ростом отдельных частей тела, например рук, ног, подбородка, надбровных дуг, носа языка, и разрастанием внутренних органов. Болезнь вызывается, вероятно, опухолевым поражением передней доли гипофиза.

Лактотропный гормон (пролактин, лютеотропный гормон)

Пролактин считается одним из наиболее «древних» гормонов гипофиза, поскольку его удается обнаружить в гипофизе низших наземных животных, у которых отсутствуют молочные железы, а также получить лактогенный эффект у млекопитающих. Помимо основного действия (стимуляция развития молочных желез и лактации), пролактин имеет важное биологическое значение – стимулирует рост внутренних органов, секрецию желтого тела (отсюда его второе название «лютеотропный гормон»), оказывает стимулирующее влияние на функцию почек, кроветворение и обладает гипергликемическим действием. Избыток пролактина, образующийся обычно при наличии опухолей из секретирующих пролактин клеток, приводит к прекращению менструаций (аменорея) и увеличению молочных желез у женщин и к импотенции у мужчин.

Расшифрована структура пролактина из гипофиза овцы, быка и человека. Это крупный белок, представленный одной полипептидной цепью с тремя дисульфидными связями, состоящий из 199 аминокислотных остатков. Видовые отличия в последовательности аминокислот касаются по существу 2-3 аминокислотных остатков. Пролактина в гипофизе содержится значительно меньше, чем гормона роста. В крови женщин уровень пролактина резко повышается перед родами: до 0,2 нг/л против 0,01 нг/л в норме (в 20 раз!).

Тиреотропный гормон (ТТГ, тиреотропин)

В отличие от рассмотренных выше пептидных гормонов гипофиза, представленных в основном одной полипептидной цепью, тиреотропин является сложным гликопротеидом и содержит, кроме того, по две a- и b-субъединицы, которые в отдельности биологической активностью не обладают: мол.масса его около 30 000.

Тиреотропин контролирует развитие и функцию щитовидной железы и регулирует биосинтез и выделение в кровь тиреоидных гормонов. Помимо щитовидной железы ТТГ оказывает действие и на некоторые другие ткани, в частности на жировые клетки in vitro, стимулируя липолиз.

Полностью расшифрована первичная структура a- и b-субъединиц тиреотропина быка, овцы и человека: a-субъединица, содержащая 96 аминокислотных остатков, имеет одинаковую аминокислотную последовательность во всех изученных ТТГ и во всех лютеинизирующих гормонах гипофиза (!); b-субъединица тиреотропина человека, содержащая 112 аминокислотных остатков, отличается от аналогичного полипептида в ТТГ крупного рогатого скота аминокислотными остатками и отсутствием С-концевого метионина. Поэтому многие авторы специфические биологические и иммунологические свойства гормона связывают с b-субъединицей. Предполагается, что действие тиреотропина осуществляется, подобно действию других гормонов белковой природы, посредством связывания со специфическими рецепторами плазматических мембран и активирования аденилатциклазной системы.

ТТГ оказывает влияние на скорости следующих процессов в щитовидной железе:

1) поглощение йода из крови;

2) включение йода в состав тиреоидных гормонов;

3) освобождение гормонов из железы.

Наряду с увеличением скорости синтеза и секреции тиреоидных гормонов ТТГ ускоряет ряд метаболических процессов в железе:

образование цАМФ;

транспорт и превращение глюкозы (пентозофосфатный путь, гликолиз, цикл трикарбоновых кислот);

синтез фосфоглицеридов и сфинголипидов;

синтез РНК и белков;

синтез простагландонов и

потребление кислорода.

Гонадотропные гормоны (гонадотропины)

К гонадотропинам относятся фолликулостимулирующий гормон (ФСГ, фоллитропин), лютеинизирующий гормон (ЛГ, лютропин) или гормон, стимулирующий интерстициальные клетки и описанный выше пролактин или лютеотропный гормон . (К группе гонадотропинов относят также хорионический гонадотропин человека (ХГЧ), синтезируемый клетками плаценты и представленный гликопротеидом). ФСГ и ЛГ гормоны синтезируются в передней доле гипофиза и являются, как и тиреотропин, сложными белками-гликопротеидами с мол. массой 28000-34000. Они регулируют стероидо- и гаметогенез в половых железах. Фоллитропин вызывает созревание фолликулов в яичниках у самок и сперматогенез - у самцов. Лютропин у самок стимулирует секрецию эстрогенов и прогестерона, как и разрыв фолликулов с образованием желтого тела, а у самцов – секрецию тестостерона и развитие интерстициальной ткани. Биосинтез гонадотропных гормонов, как было отмечено, регулируется гипоталамическим гормоном гонадолиберином.

Гипофизарные гонадотропины ФСГ, ЛГ, а также плацентарный ХГЧ являются гликопротеидами состоящими из двух a- и b-субъединиц; a-субъединицы всех этих гормонов идентичны. Структурные взаимоотношения этих гормонов с тиреотропином рассмотрены выше. a- и b-субъединицы в отдельности лишены биологической активности. Биологическая и иммунологическая специфичность рассматриваемых гормонов связана с b-субъединицей.

Хотя хорионический гонадотропин является гормоном не гипофизарного, а плацентарного происхождения, характер его биологического действия сходен с действием гормонов гипофиза. Он появляется в моче в ранний период беременности, приблизительно в течении первой недели (!) после срока наступления менструального периода; это используется в двух обычно применяемых диагностических тестах на беременность (тест Ашгейма-Цондека ставится на мышках, а тест Фридмана – на крольчихах). Для тестов используется моча, которая вводится в кровь животных; при беременности происходят заметные изменения в яичниках животных: увеличивается их вес, наблюдаются кровоизлияния в некоторых неразорвавшихся фолликулах или «овуляторный» ответ в виде лопнувших фолликулов.

Причиной ошибочно положительных тестов Ашгейма-Цондека и Фридмана могут быть злокачественная опухоль плацентарной ткани (хорионэпителиома) или пузырный занос (кистозное дегенеративное заболевание хорионической ткани). Высокое содержание гонадотропинов в моче наблюдается также у самцов с опухолями семенников, состоящими из злокачественной эмбриональной ткани, например при тератоме или эпителиоме. Определение гонадотропинов является ценным диагностическим тестом при этих заболеваниях.

Липотропные гормоны (ЛТГ, липотропины)

Среди гормонов передней доли гипофиза, структура и функция которых выяснена в последнее десятилетие, следует отметить липотропины, в частности b- и g-ЛТГ. Наиболее подробно изучена первичная структура b-липотропина человека, овцы и свиньи, молекулы которого состоят из 91 аминокислотного остатка и имеют существенные видовые различия в последовательности аминокислот. К биологическим свойствам b-липотропина относятся жиромобилизующее действие, кортикотропная, меланоцитстимулирующая и гипокальциемическая активность и, кроме того, инсулиноподобный эффект, выражающийся в повышении скорости утилизации глюкозы в тканях. По-видимому, липотропный эффект осуществляется через систему аденилатциклаза-цАМФ-протеинкиназа, завершающей стадией действия которого является фосфорилирование неактивной триацилглицерол-липазы. Этот фермент после активирования расщепляет нейтральные жиры на диацилглицерол и высшую жирную кислоту.

Перечисленные биологические свойства обусловлены не b-липотропином, гормонально неактивным (!), а продуктами его распада , образующимися при ограниченном протеолизе и обладающими опиатноподобной активностью (метионин-энкефалин, лейцин-энкефалин и b-эндорфин и др.). Повышенный интерес к указанным пептидам диктуется их необычайной способностью, подобно морфину, снимать болевые ощущения.

Эпифиз (шишковидное тело, шишковидная железа) является небольшим образованием, имеющим форму сосновой шишки, расположенной у млекопитающих между полушариями мозга. Это овальной формы и красноватой окраски тело, более узкий конец которого направлен вниз и назад. Длина тела 7-10 мм, поперечник 5-7 мм. Группирующиеся в виде тяжей клетки имеют секреторные свойства, вырабатывают и выделяют в кровь меланотонин. Шишковидное тело крупнее в раннем детстве, но уже на 7 году жизни обнаруживаются первые признаки инволюции (обратного развития). Эпифиз у женщин крупнее, чем у мужчин.

Функция. Влияет на пигментацию кожи, вызывая агрегацию пигмента, сопровождающуюся просветлением кожи (!) стимулируя агрегацию, а не рассредоточение меланиновых гранул в меланоцитах, что происходит под влиянием МSH. Меланотонин тормозит развитие половой функции у молодых животных, а также действие гонадотропинов у взрослых животных (результат прямого действия на гипоталамус и гипофиз). Удаление эпифиза у молодых животных приводит к быстрому росту скелета и преждевременному и преувеличенному развитию половых желез и вторичных половых признаков.

Стой, кто ведет? [Биология поведения человека и других зверей] Жуков. Дмитрий Анатольевич

Окситоцин и вазопрессин – социальные гормоны

Интенсивное изучение роли гормонов в социальном поведении началось после обнаружения двух репродуктивных стратегий у полевок, рода мышевидных грызунов. Два вида полевок – степная (Microtus ochrogaster) и луговая (Microtus pennsylvanicus) – живут в приблизительно одинаковых условиях, но используют две противоположные стратегии размножения (рис. 7.20).

При моногамии (полевка степная), т. е. при К -стратегии, оба родителя две трети времени проводят в гнезде. Детеныши никогда не остаются одни. При полигамии (полевка луговая), т. е. при r -стратегии, они не знают отца, а мать проводит в гнезде только треть времени. Оказалось, что два вида полевок различаются не только стратегиями репродуктивного поведения, но и активностью систем окситоцина и вазопрессина, которая значительно выше у моногамных животных по сравнению с полигамными.

Окситоцин считается в настоящее время основным гормоном, от которого зависит привязанность матери к детенышам. Искусственное изменение уровня гормона в эксперименте вызывает соответствующее изменение родительского поведения: уменьшение окситоцина уменьшает родительскую опеку, а его рост повышает ее.

Рис. 7.20. Моно– и полигамное поведение отражает две стратегии размножения

Окситоцин усиливает аффилиативное поведение, в том числе и обеспечивая социальную память. После выключения секреции окситоцина у животных отсутствует социальная память: встречая знакомую особь, животное ведет себя с ней как с незнакомцем. Особи, лишенные социальной памяти, естественно, не способны образовывать стабильные пары, поэтому К -стратегия для них исключается. При этом память на запахи, не связанные с общением, не страдает. Животное с нарушенной системой окситоцина так же хорошо находит дорогу в лабиринте, в котором ранее была скрыта пища, как и животное, не подвергавшееся выключению секреции окситоцина. Таким образом, дефицит в системе окситоцина вызывает не нарушения обоняния, а дефицит социального поведения.

Окситоцин имеет особенно большое значение для самок грызунов. Его введение усиливает аффилиацию самки к знакомому самцу и не влияет на поведение самцов. У самцов грызунов аффилиацию к самке стимулирует другой гормон – вазопрессин, при введении которого предпочтение знакомой самки перед незнакомой возрастает. Основу этого эффекта вазопрессина, возможно, составляет повышенная тревога, при которой, соответственно, усиливается тяга к знакомой самке (даже если с ней и не было совокупления), т. е. к стабильным условиям существования.

Окситоцин усиливает аффилиацию к «своим». Вазопрессин усиливает враждебность к «чужим»

Системы окситоцина и вазопрессина и их биологические эффекты имеют свои особенности у моно– и полигамных видов, т. е. у r – и К -стратегов. У полевок, полигамных r -стратегов, роль гормонов скуднее в силу более слабого родительского поведения. Распределение рецепторов вазопрессина и окситоцина в мозге полигамов отличается от распределения гормональных рецепторов у моногамов. Кроме того, у полигамных самцов введение вазопрессина не изменяет ни аффилиацию к самке, ни межсамцовую агрессию. Введение окситоцина самкам усиливает материнскую агрессию, а самцам – аффилиативное поведение по отношению к детенышам, но только на фоне имитации тяжелых природных условий – сокращения светового дня.

Не только у грызунов, но и у человека окситоцин усиливает аффилиацию мужских и женских особей. Считают, что именно в упрочении взаимной симпатии заключается смысл резкого увеличения секреции окситоцина – не только у женщины, но и у мужчины – во время полового акта. У людей, которые переживают период романтической любви, отмечается повышенный уровень окситоцина. Добровольцы, которым его впрыскивали, оценивали сексуальную привлекательность лиц другого пола на фотографиях значительно выше, чем те люди, которые вместо окситоцина получали водный раствор яичного белка.

Под влиянием окситоцина, конечно же, усиливается и материнское поведение человека. Причем это его свойство использовали в клинике задолго до того, как в конце 1990-х гг. были обнаружены различия в системе окситоцина у моно– и полигамных полевок.

Например, описан следующий клинический случай (синдром Медеи).

Больная Б., 33 года, инженер.

Жалобы на раздражительность, легкую возбудимость и почти постоянное чувство злобы к своему девятилетнему ребенку. Эта злобность проявляется в необоснованных придирках и наказаниях из-за пустяков. И хотя больная понимает неадекватность своего поведения, поделать с собой ничего не может. Причину такого отношения к ребенку объясняет тем, что родила его от человека, который причинил ей много горя и к которому она по настоящее время испытывает ненависть. Больная не в состоянии избавиться от этого чувства. «Умом понимаю, что ребенок здесь ни при чем. Я люблю сына, но злоба меня переполняет». Особенно несдержанна пациентка в предменструальный период.

Лечилась почти всеми транквилизаторами. Эффект был лишь в первые дни приема препарата. Прошла курс гипнотерапии. Тоже безуспешно. «Я хочу забыть прошлое, но не могу».

Начат курс лечения окситоцином по 3 МЕ подкожно два раза в день в течение двух недель.

На четвертый день почувствовала себя спокойнее. Была удивлена, что ее состояние улучшилось. «Что-то звериное ушло из моего сознания». «…Со страхом думаю, что кошмар может вернуться».

Улучшение длилось более двух месяцев. Затем в предменструальный период пациентка вновь испытала чувство немотивированной злобы, правда, не столь яркое, как раньше. Сама пришла к врачу с просьбой повторить курс лечения окситоцином. Второй, а затем, через четыре месяца, третий курс лечения в значительной степени улучшили состояние больной. Появилось незнакомое ранее чувство «благополучия».

Важно, что введение окситоцина оказалось эффективным не само по себе, а только в сочетании с психотерапией. Больные говорили: «Внезапно все, что говорили врачи и мы сами себе внушали, обрело реальность»; «Слова врача, что надо забыть тот эпизод, вдруг приобрели настоящий смысл». Таким образом, окситоцин не мог индуцировать дружелюбную установку в психике человека, не мог сам по себе стереть память о тягостных воспоминаниях или сделать их субъективно незначимыми. Только после того как в результате психотерапевтических мероприятий состояние больных несколько изменилось, окситоцин усилил их безмятежность и ослабил память. Возможно, впрочем, что введение окситоцина усилило доверие к врачу, в частности к тому, что он говорит. В итоге произошла рационализация ситуации: больные осознали, что случившееся или происходящее с ними не является катастрофой. Таким образом, окситоцин модулирует дружелюбную установку человека и модулирует память – иначе говоря, влияет на эти психические функции только при определенном состоянии человека. Индуцировать эти процессы окситоцин не может.

Еще одним важным моментом является то, что окситоцин усилил связь не только между матерью и ребенком, но и между пациентом и врачом, которому женщина (см. пример с 33-летней пациенткой) стала больше доверять. Таким образом, окситоцин усиливает дружелюбное отношение не только в родительских и супружеских парах, но и в других социальных группах, что было неоднократно показано в последнее время. Например, при интраназальной аппликации (впрыскивании аэрозоля в нос) окситоцин увеличивал доверие между людьми. В этом эксперименте 124 студента участвовали в экономической игре, изображая инвесторов или управляющих инвестициями. Средства, которые они вкладывали, измерялись условными единицами и имели реальный денежный эквивалент. В конце игры все игроки получали выигранные ими деньги, помимо стабильной платы за само участие в эксперименте.

Инвестор мог выделять различные суммы в управление, а управляющий – следовать одной из двух стратегий: добросовестно распорядиться вкладом или злоупотребить доверием инвестора. В первом случае оба участника получали прибыль, пропорциональную вкладу, а во втором – инвестор терял свой вклад, зато управляющий получал прибыль значительно б?льшую, чем в первом случае. Одна пара игроков встречалась друг с другом только один раз, но все игроки по ходу игры обменивались мнениями о добросовестности управляющих.

Оказалось, что «инвесторы», получавшие в каждую ноздрю по 12 МЕ окситоцина, доверяли своим «управляющим» значительно б?льшие суммы, чем «инвесторы», получавшие плацебо. При этом введение окситоцина не влияло на рискованное поведение, которое было не связано с межличностными отношениями, т. е. с человеческим фактором. Добросовестность «управляющих» не зависела от введения им окситоцина. Точно так же не зависели от него показатели «настроения» и «спокойствия» (термины использованы авторами статьи), определенные с помощью психологических тестов и опросников.

Рис. 7.21. Можно предположить, что у Буратино была повышена активность системы окситоцина, что и побудило его доверить свои деньги подозрительным незнакомцам

Введение окситоцина увеличивает доброжелательность оценок незнакомых людей, чьи фотографии предъявляли добровольцам. Те из них, кому вводился окситоцин, выше оценивали своих родственников, чем получавшие водный раствор, а средние оценки малознакомых людей были одинаковы в обеих группах испытуемых.

Таким образом, окситоцин увеличивает доверие между людьми точно так же, как количество социальных контактов и дружелюбие между животными (рис. 7.21).

Усиление аффилиации, т. е. дружелюбного отношения к другим людям, под действием окситоцина дало основание научным журналистам называть окситоцин «гормоном любви», «гормоном доверия» и даже «моральной молекулой». Подобные метафоры вызывают сомнения, поскольку неизвестен первичный механизм влияния окситоцина на поведение. До 2000 г. его чаще называли «амнестическим гормоном», поскольку он ухудшает память.

Рис. 7.22. Кормящие женщины плохо запоминают прочитанное. Частично это обусловлено высокой секрецией окситоцина во время лактации

Окситоцин оказался эффективен для лечения ряда случаев невроза с дисфорией (мрачным, угрюмым, злобно-раздражительным настроением). Важно то, что у всех больных имелось сочетание неприятных воспоминаний, связанных с определенным человеком. Таким образом, терапевтический эффект окситоцина проявился в том, что он усилил дружелюбие, ослабив воспоминание и уменьшив тревожность. В экспериментах на животных неоднократно было показано, что окситоцин ухудшает запоминание и затрудняет извлечение памятного следа.

Кроме того, в экспериментах на животных и на людях установлено, что окситоцин уменьшает тревожность. Пониженный уровень окситоцина связан с высокой тревогой не только при невротических состояниях. Например, при определении уровня окситоцина у студентов оказалось, что те, у кого он был высоким, сдали сессию значительно хуже, чем те, у кого содержание этого гормона было низким. Возможно, высокая концентрация окситоцина обусловила низкую тревожность и, как следствие, низкую мотивацию студентов, что и отразилось на качестве их подготовки к экзаменам (рис. 7.22).

Ранее мы говорили, что окситоцин – один из гормонов, уменьшающих психическое напряжение в результате стрессогенных событий (см. главу 5). Оказалось, что окситоцин эффективен только при стрессах, вызванных изменениями в социальной среде. Крыс подвергали либо болевому воздействию, либо вызывали стресс возмущением социальной среды – помещали в клетку с незнакомыми особями. Введение окситоцина предотвращало изменения в поведении, вызванные только социальным, но не физическим воздействием. Это означает, что окситоцин участвует в регуляции не любого стрессорного поведения, а только поведения, связанного с социальным взаимодействием.

Противоположным окситоцину действием – усилением памяти, т. е. поведения, связанного с социальным взаимодействием, – характеризуется вазопрессин. Введенный до обучения, он улучшает запоминание. Это действие вазопрессина проявляется не во всех тестах. Он усиливает тревожность как в отношении средовых изменений, так и при социальных контактах. В состоянии покоя вазопрессин усиливает активные формы поведения – движение, манипуляции с предметами, но в стрессогенной обстановке стимулирует проявление реакции затаивания. Вазопрессин часто рассматривается как гормон пассивного стиля приспособления – лишенное его животное утрачивает и способность замирать. Вазопрессин эффективен как терапевтическое средство для больных с инсультами, церебральным атеросклерозом, черепно-мозговыми травмами при нарушениях памяти, ориентировки в пространстве, внимания.

Если в отношении памяти вазопрессин является функциональным антагонистом окситоцина, то в отношении аффилиативного поведения два гормона действуют синергично. Вазопрессин, как и окситоцин, обнаружен в значительно б?льших концентрациях у моногамных видов, чем у полигамных. Манипуляции с его уровнем изменяют социальное поведение примерно так же, как и при манипуляциях с уровнем окситоцина.

Кроме того, вазопрессин и окситоцин играют определенную роль в различных расстройствах психики. При нервной анорексии отмечается высокая активность центральных вазопрессинергических систем и низкая – окситоцинергических. При шизофрении увеличена активность систем окситоцина и снижена активность систем вазопрессина. Этот факт соответствует отмечаемому терапевтическому эффекту вазопрессина на ряд шизофренических симптомов. Окситоцин может быть связан с рядом позитивных симптомов шизофрении, таких как галлюцинации. Вероятно, он играет роль при формировании навязчивых состояний.

Если окситоцин (с определенными натяжками) можно называть «гормоном любви», «амнестическим гормоном» и пр., то для вазопрессина такой детерминизм психотропной функции вряд ли возможен. Дело в том, что основное назначение вазопрессина – регуляция водно-солевого обмена. Соответственно, его секреция и синтез регулируются в первую очередь концентрацией ионов в крови. Продукция вазопрессина меняется в зависимости от физических факторов, влияющих на организм, например от положения тела – лежа или стоя. Поэтому для психотропного эффекта важна не столько его концентрация в циркулирующей крови, сколько состояние системы рецепторов вазопрессина в структурах мозга, организующих социальное поведение.

В формировании социальных связей, в частности родительских и супружеских, играют роль и другие гормоны. Если у здоровой женщины отмечается высокий уровень кортизола в состоянии покоя, то это является основанием для прогноза интенсивного родительского поведения. Концентрация кортизола в крови во время беременности растет у всех женщин. Но сильнее она увеличивалась у тех из них, которые впоследствии проявляли более выраженное материнское поведение. Помимо кортизола, склонность к родительской аффилиации отражается в соотношении эстрадиола и прогестерона. Постепенное увеличение этого соотношения от ранних сроков беременности к поздним служит основанием для прогноза выраженного материнского поведения.

Относительно гормональной регуляции отцовского, т. е. родительского, поведения мужчины известно очень мало. Есть данные, свидетельствующие о том, что такое поведение более выражено у мужчин с невысоким уровнем тестостерона и высоким содержанием пролактина. У мужчин, проводящих много времени со своими детьми до одного года, выше содержание кортизола и пролактина в крови, чем у тех, кто тратил на такое общение мало времени, однако отличия не достигают уровня статистической достоверности.

Из книги Семь экспериментов, которые изменят мир автора Шелдрейк Руперт

СОЦИАЛЬНЫЕ И БИОЛОГИЧЕСКИЕ АСПЕКТЫ При исследовании парапсихологических способностей человека испытуемым, как правило, вскоре наскучивают однообразные эксперименты. Как только интерес пропадает, результаты исследований перестают быть достоверными. Совершенно иначе

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Предпосылки гениальности автора Эфроимсон Владимир Павлович

Из книги Инстинкты человека автора Протопопов Анатолий

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

III. Социальные инстинкты О консолидированности вообще…Социальные инстинкты, как мало какие другие, служат решению долгосрочных задач процветания вида (точнее - его генофонда). На первый взгляд, концепция естественного отбора исключает возможность следования

Из книги Стой, кто ведет? [Биология поведения человека и других зверей] автора Жуков. Дмитрий Анатольевич

Что такое вазопрессин и в чем проявляется его физиологическое действие? Вазопрессин (антидиуретический гормон) – нейрогормон животных и человека, который вырабатывается в гипоталамусе, поступает в гипофиз, а затем выделяется в кровь. Вазопрессин стимулирует обратное

Из книги Человек как животное автора Никонов Александр Петрович

Что такое окситоцин и в чем состоит его физиологическое действие? Окситоцин (оцитоцин) – нейрогормон позвоночных животных и человека. Он вырабатывается в гипоталамусе, поступает в гипофиз, а затем выделяется в кровь. Окситоцин вызывает сокращение гладких мышц, особенно

Из книги Почему мы любим [Природа и химия романтической любви] автора Фишер Хелен

Вазопрессин и окситоцин Рис. 2.2. Рефлекс Фергюсона – стимуляция секреции молока при механической стимуляции влагалища. На рисунке Леонардо да Винчи показана прямая связь влагалища с молочной железой. В действительности нервный сигнал от влагалища поступает в ЦНС, что

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

Социальные потребности К этой группе относятся все потребности и, соответственно, все формы поведения, связанные с общением с другими существами, чаще всего – с представителями своего вида. Общение может быть не прямым, а только воображаемым. Тем не менее практически

Из книги Антропология и концепции биологии автора

Глава 4 Социальные аспекты животной любви Осень жизни, как и осень года, Надо, не скорбя, благословить. Эльдар Рязанов - Дочь - отрезанный ломоть, - сказала моя супруга жене моего друга, когда те пришли к нам в гости и разговор между женами зашел об ихней тяжкой бабской

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Окситоцин: еще один коктейль привязанности? …Так вместе мы росли, Как бы двойчатка-вишня, с виду порознь И все же, хоть раздельные, в единстве; Две ягоды, но на одном стебле. (53) Поэты редко воспевают чувство привязанности, возможно, потому, что оно редко заставляет их

Из книги Тайны пола [Мужчина и женщина в зеркале эволюции] автора Бутовская Марина Львовна

Окситоцин и парохиальность Разумеется, парохиальный альтруизм не канул в лету: он и сегодня остается весьма характерной особенностью человеческой психики и поведения. Многие люди готовы пожертвовать своими интересами (то есть совершить альтруистический поступок) ради

Из книги автора

9.3. Социальные вопросы пола Наглядно демонстрирует значение филогенетических истоков анализ роли полового поведения в эволюции человека. Долгое детство и беспомощность человека в этот период явились причиной многих радикальных изменений в его анатомии, физиологии и

Из книги автора

4.2. Социальные взаимоотношения Неотъемлемый атрибут закрытой социальной системы, который определяет ее структурированность, – это иерархия доминирования. Как филогенетическое наследие она является продуктом социальной эволюции, а как адаптация – своеобразным

Из книги автора

Социальные отношения у обезьян: различия между полами Гипотеза пресса хищников и гипотеза межгрупповой конкуренции за пищевые ресурсы сходятся в одном важном пункте: они признают, что виды существенно различаются, в первую очередь, по характеру внутригрупповых

Из книги автора

Социальные отношения у обезьян: различия между полами В настоящее время для объяснения социальности у приматов предлагаются две гипотезы: гипотеза пресса хищников и гипотеза межгрупповой конкуренции за пищевые ресурсы. Обе гипотезы сходятся в одном важном пункте: они

- От нейросекреторных ядер гипоталамуса (супраоптического и паравентрикулярного) отходят аксоны к гипофизу

- По этим аксонам в заднюю долю гипофиза приходят упакованные в гранулы гормоны

- В задней доле гипофиза (нейрогипофиз) синтеза гормонов не происходит

- В передней части гипофиза (аденогипофиз) секретируется целый набор пептидных гормонов. Аденогипофиз находится под контролем особых химических факторов, которые секретируются нейронами гипоталамуса и выделяются из окончаний аксонов этих клеток в срединном возвышении в основании ножки гипофиза, откуда током крови достигают клеток аденогипофиза. Четыре из этих факторов называются либерины, а три- статинами

- Либерины стимулируют секрецию соответствующих гормонов клетками аденогипофиза

- Статины тормозыт секрецию соответствующих гормонов

- Либерины и статины- короткие пептиды, состоят из небольшого числа

аминокислотных остатков. Характерен мембранный тип рецепции.

Кортиколиберин вырабатывается в гипоталамусе, стимулирует выброс в кровь АКТГ

Тиреолиберин гипоталамуса (короткий пептид) состоит из 3 аминокислотных остатков регулиерует синтез и выброс тиреотропного гормона, способен непосредственно влиять на клетки мозга, активируя эмоциональное поведение и поддерживая бодрствование, учащая дыхание, подавляя аппетит, смягчая течение депрессий

Люлиберин- гипоталамический либерин, контролирующий регуляцию гонадотропинов (фолликулостимулирующий и лютеинизирующий гормоны) состоит из 10 аминокислотных остатков; также способен действовать на клетки мозга, активируя половое поведение, повышая эмоциональность и улучшая обучение и память.

Снижение люлиберина обнаруживается при нервной анорексии

Соматолиберин стимулирует образование и выброс соматотропина

Соматостатин тормозит эти процессы

Так же стоит отметить что в островках Ларгенганса(поджелудочная железа), в дельта(15%), вырабатывается соматостатин.

ПРОЛАКТО-СТАТИН(Пролактин) из дофамина

Меланостатин тормозит выброс меланоцитстимулирующего гормона. Помимо прямого влиянии на гипофиз, активирует эмоциональную и двигательную активность, воздействуя прямым образом на функции мозга. Обладает антидепрессивным эффектом и применяется при Паркинсонизме

- Из нервных окончаний клеток гипоталамуса в сосуды задней доли гипофиза поступают 2 пептидных гормона, каждый из которых состоит из 9 аминокислотных остатков: антидиуритический гормон (АДГ= вазопрессин) и окситоцин

- Орган-мишень для вазопрессина- почки

- Вазопрессин вырабатывается в нейронах супраоптического ядра гипоталамуса, по аксонам поступает в заднюю долю гипофиза, а оттуда с током крови достигает собирательных трубочек и выводных протоков почек

- Под действием вазопрессина повышается обратное всасывание воды из мочи, что препятствует большим потерям жидкости

- В повышенных концентрациях вазопрессин действует на мышцы стенок артерий: они сокращаются, сосуды сужаются и давление крови повышается

- Вазопрессин- «сужающий сосуды»

- Выброс вазопрессина в кровь усиливается при больших потерях крови, когда давление падает и его нужно поднять

- Вазопрессин также воздействует на мозг, является природным стимулятором обучения и памяти

- В малых дозах способен ускорять обучение, замедлять забывание, восстанавливать память после тяжелых травм

- При уменьшении доз вазопрессина (из-за черепно-мозговых травм, опухолей мозга и менингитов) развивается НЕСАХАРНЫЙ диабет

- Симптомы болезни:

1) резкое увеличение объема мочи (до 20 литров в сутки)

При этом избытка сахара в мочи как при сахарном диабете нет. Связано это с тем, что без вазоперссина невозможно обеспечить обратное поглощение воды из мочи в кровь

Сейчас вазопрессин научились получать синтетически и лечат им несахарный диабет

В тяжелых случаях орган-мишень не способен реагировать даже на большие концентрации вазопрессина, это происходит из-за того, что рецепторы вазопрессина, расположенные в собирательных трубочках и выводных протоках, теряют чувствительность к гормону.

Окситоцин (ОТ) в большинстве случаев вырабатывается в нейронах паравентрикулярного ядра гипоталамуса, транспортируется по аксонам в нейрогипофиз и оттуда поступает в кровь

Ткани-мишени ОТ: гладкие мышцы матки и мышечные клетки, окружающие протоки молочных желез и семенников

К концу беременности (после 280 дня) секреция окситоцина повышается, что приводит к сокращению гладкой мускулатуры матки, плод продвигается к шейке матки и к влагалищу, что приводит к родам. После родов секреция окситоцина тормозится

При недостаточной секреции окситоцина роды невозможны: приходится прибегать к искусственной стимуляции, вводя роженице синтетический окситоцин

Антидиуретический гормон (АДГ), или вазопрессин, осуществляет в организме 2 основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона. Это действие осуществляется благодаря взаимодействию гормона с вазопрессиновыми рецепторами типа V-2, что приводит к повышению проницаемости стенки канальцев и собирательных трубочек для воды, ее реабсорбции и концентрированию мочи. В клетках канальцев происходит также активация гиалуронидазы, что приводит к усилению деполимеризации гиалуроновой кислоты, в результате чего повышается реабсорбция воды и увеличивается объем циркулирующей жидкости. В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление. Поэтому его также называют вазопрессином. В обычных условиях при его физиологических концентрациях в крови это действие не имеет существенного значения. Однако при кровопотере, болевом шоке происходит увеличение выброса АДГ. Сужение сосудов в этих случаях может иметь адаптивное значение. Образование АДГ усиливается при повышении осмотического давления крови, уменьшении объема внеклеточной и внутриклеточной жидкости, снижении артериального давления, при активации ренин-ангиотензиновой системы и симпатической нервной системы. При недостаточности образования АДГ развивается несахарный диабет , или несахарное мочеизнурение, который проявляется выделением больших количеств мочи (до 25 л в сутки) низкой плотности, повышенной жаждой. Причинами несахарного диабета могут быть острые и хронические инфекции, при которых поражается гипоталамус (грипп, корь, малярия), черепно-мозговые травмы, опухоль гипоталамуса. Избыточная секреция АДГ ведет, напротив, к задержке воды в организме.

Окситоцин

Окситоцин избирательно действует на гладкую мускулатуру матки, вызывая ее сокращения при родах. На поверхностной мембране клеток существуют специальные окситоциновые рецепторы. Во время беременности окситоцин не повышает сократительную активность матки, но перед родами под влиянием высоких концентраций эстрогенов резко возрастает чувствительность матки к окситоцину.

Окситоцин участвует в процессе лактации. Усиливая сокращения миоэпителиальных клеток в молочных железах, он способствует выделению молока. Увеличение секреции окситоцина происходит под влиянием импульсов от рецепторов шейки матки, а также механорецепторов сосков грудной железы при кормлении грудью. Эстрогены усиливают секрецию окситоцина. Функции окситоцина в мужском организме изучены не достаточно. Считают, что он является антагонистом АДГ. Недостаток продукции окситоцина вызывает слабость родовой деятельности.

Гормоны вазопрессин и окситоцин синтезируются рибосомальным путем, причем одновременно в гипоталамусе синтезируются 3 белка: нейрофизин I, II и III, функция которых заключается в нековалентном связывании окситоцина и вазопрессина и транспорте этих гормонов в нейросекреторные гранулы гипоталамуса. Далее в виде комплексов нейрофизин–гормон они мигрируют вдоль аксона и достигают задней доли гипофиза, где откладываются про запас; после диссоциации комплекса свободный гормон секретируется в кровь. Нейрофизины также выделены в чистом виде, и выяснена первичная структура двух из них (92 из 97 аминокислотных остатков соответственно); это богатые цистеином белки, содержащие по семь дисульфидных связей. Химическое строение обоих гормонов было расшифровано классическими работами В. дю Виньо и сотр., впервые выделивших эти гормоны из задней доли гипофиза и осуществивших их химический синтез. Оба гормона представляют собой нонапептиды следующего строения:

Вазопрессин отличается от окситоцина двумя аминокислотами: он содержит в положении 3 от N-конца фенилаланин вместо изолейцина и в положении 8 – аргинин вместо лейцина. Указанная последовательность 9 аминокислот характерна для вазопрессина человека, обезьяны, лошади, крупного рогатого скота, овцы и собаки. В молекуле вазопрессина из гипофиза свиньи вместо аргинина в положении 8 содержится лизин, отсюда название «лизин-вазопрессин». У всех позвоночных, за исключением млекопитающих, идентифицирован, кроме того, вазотоцин. Этот гормон, состоящий из кольца с S-S мостиком окситоцина и боковой цепью вазопрессина, был синтезирован химически В. дю Виньо задолго до выделения природного гормона. Высказано предположение, что эволюционно все нейрогипофизарные гормоны произошли от одного общего предшественника, а именно аргинин-вазотоцина, из которого путем одиночных мутаций триплетов генов образовались модифицированные гормоны. Основной биологический эффект окситоцина у млекопитающих связан со стимуляцией сокращения гладких мышц матки при родах и мышечных волокон вокруг альвеол молочных желез, что вызывает секрецию молока. Вазопрессин стимулирует сокращение гладких мышечных волокон сосудов, оказывая сильное вазопрессорное действие, однако основная роль его в организме сводится к регуляции водного обмена, откуда его второе название антидиуретического гормона. В небольших концентрациях (0,2 нг на 1 кг массы тела) вазопрессин оказывает мощное антидиуретическое действие – стимулирует обратный ток воды через мембраны почечных канальцев. В норме он контролирует осмотическое давление плазмы крови и водный баланс организма человека. При патологии, в частности атрофии задней доли гипофиза, развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости с мочой. При этом нарушен обратный процесс всасывания воды в канальцах почек. Относительно механизма действия нейрогипофизарных гормонов известно, что гормональные эффекты, в частности вазопрессина, реализуются через аденилатциклазную систему. Однако конкретный механизм действия вазопрессина на транспорт воды в почках пока остается неясным.

Всем известно, как важна для организма человека вода. Большинство источников называют 70%, как средний показатель содержания воды в организме для среднестатистического человека в зрелом возрасте. Только в окружении воды клетки человека могут выполнять свои функции и обеспечивать гомеостаз (постоянство внутренней среды организма). В ходе обменных процессов водный баланс постоянно нарушается, поэтому есть механизмы, которые способствуют поддержанию постоянства среды.

Один из их таких механизмов гормональный. Антидиуретический гормон (АДГ) , или вазопрессин регулирует сохранение и выведение воды из организма. Запускает процесс реабсорбции в микроструктурах почек, в ходе которого образуется вторичная моча. Ее количество дозировано и не должно превышать 1,5-2 литров в сутки. Даже при обезвоживании организма действие вазопрессина в совокупности с другими гормонами препятствует высыханию внутренней среды.

Синтез АДГ и его биохимическая природа

В гипоталамусе (это часть промежуточного мозга) вырабатывается антидиуретический гормон (вазопрессин). Его синтез осуществляют нервные клетки гипоталамуса . В этой части головного мозга он только синтезируется, затем перемещается в гипофиз (его заднюю долю), где накапливается.

Выброс гормона в кровь происходит только когда его концентрация достигает определенного уровня. Накапливаясь в задней доле гипофиза , гормон вазопрессин влияет на выработку адренокортикотропного гормона. АКТГ запускает синтез гормонов, которые вырабатываются корковым слоем надпочечников.

АДГ состоит из девяти аминокислот, одна из которых называется аргинин. Поэтому другое название активного вещества – аргинин вазопрессин . По своей химической природе он очень похож на окситоцин. Это еще один гормон, который вырабатывает гипоталамус , и он точно так же накапливается в задней доле гипофиза. Описано множество примеров взаимодействия и функционального взаимозамещения этих гормонов.

Например, при разрыве химической связи между двумя аминокислотами, глицином и аргинином, действие вазопрессина меняется. Высокий уровень АДГ вызывает сокращение стенок матки (), а повышенное содержание окситоцина – антидиуретический эффект.

В норме, гормон АДГ регулирует количество жидкости, концентрацию натрия в спинномозговой жидкости. Опосредованно он может повышать температуру, а также внутричерепное давление. Стоит отметить, что вазопрессин не отличается многообразием функций, но значение его для организма очень большое.

Функции вазопрессина

Основные функции вазопрессина:

  • регуляция процесса вывода избытка жидкости почками;
  • при недостатке жидкости уменьшение объема вторичной мочи и увеличение ее концентрации;
  • участие в физиологических процессах, которые происходят в сосудах и головном мозге;
  • влияет на синтез адренокортикотропного гормона;
  • способствует поддержанию тонуса мышц, которые находятся в стенках внутренних органов;
  • повышает артериальное давление;
  • ускоряет свертываемость крови;
  • улучшает запоминание;
  • при совместном действии с гормоном окситоцином влияет на выбор полового партнера, проявление родительского инстинкта;
  • помогает организму адаптироваться в стрессовых ситуациях.

Все перечисленные функции способствуют увеличению объема крови, которая циркулирует в организме. Это достигается за счет поддержания достаточного количества жидкости и разведения плазмы. Антидиуретический гормон улучшает циркуляцию в микротрубочках почек, так как увеличивает их проницаемость. АДГ повышает артериальное давление, поддерживая тонус мышечной ткани сердца, кровеносных сосудов, органов пищеварительной системы.

Вызывая спазм мелких кровеносных сосудов, запуская синтез белков в печени, вазопрессин улучшает свертываемость крови . Поэтому в стрессовой ситуации, при кровотечениях, при сильных болевых ощущениях, во время сильных нервных расстройств его концентрация в организме увеличивается.

Избыток антидиуретического гормона

Описаны состояния, при которых в крови наблюдается повышение концентрации вазопрессина:

  • большая потеря крови;
  • длительное пребывание тела в вертикальном положении;
  • повышенная температура;
  • сильные боли;
  • недостаток калия;
  • стрессы.

Эти факторы приводят к выработке дополнительного количества гормона, которое оказывает защитное действие на организм и не вызывает развития опасных заболеваний. Организм самостоятельно приводит концентрацию вещества в норму .


Высокий уровень АДГ свидетельствует о более серьезных нарушениях и связан с заболеваниями:

  • несахарный диабет;
  • синдром Пархона;
  • опухоли головного мозга, энцефалит, менингит;
  • дисфункции гипоталамуса и гипофиза;
  • онкологические новообразования;
  • заболевания органов дыхания;
  • инфекции;
  • болезни крови.

При несахарном диабете клетки становятся нечувствительными к вазопрессину, увеличивается концентрация натрия, организм утрачивает способность удерживать жидкость . Она в больших количествах выводится из организма.

Синдром Пархона имеет противоположные проявления. В организме задерживается большое количество жидкости, наблюдается снижение концентрации натрия. Это состояние вызывает общую слабость, сильную отечность, тошноту. Стоит отметить, что в процессах внутренней циркуляции воды ионы натрия также имеют большое значение. Поэтому суточная потребность человека в натрии составляет 4-6 г.

Подобные проявления имеет синдром неадекватной секреции АДГ. Он вызван снижением действия гормона , нечувствительностью к нему и характеризуется большим количеством жидкости в тканях на фоне недостатка натрия. Синдром неадекватной секреции имеет следующее проявление:

  • полиурия (чрезмерное мочеиспускание);
  • ожирение;
  • отечность;
  • слабость;
  • тошнота, рвота;
  • головные боли.

Недостаток АДГ

Факторов, которые снижают секрецию вазопрессина, значительно меньше. Недостаточная секреция гормона вызвана центральным несахарным диабетом. Антидиуретическое действие гормона снижается при травмах головы, заболеваниях гипофиза, переохлаждении. Когда человек длительное время находится в горизонтальном положении. Это состояние наблюдается после капельниц или перенесенных операций, так как увеличивается общий объем крови.

Анализ крови на АДГ

Вазопрессин это гормон , содержание которого необходимо периодически контролировать. При повышенной жажде или ее отсутствии, постоянно низком давлении, небольшом количестве мочи, частых мочеиспусканиях и других проявлениях необходимо сдать анализ крови на определение концентрации вазопрессина. При этом обязательно определяется количество натрия и осмолярность плазмы.

Перед сдачей анализа прекращают прием лекарственных препаратов , категорически запрещено курение и употребление алкоголя, выполнение физических упражнений.

1-5 пикограмм/миллилитр гормона считается нормой. Между количеством АДГ и осмолярностью крови существует зависимость. При показателе осмолярности крови до 285 ммоль/кг показатели АДГ минимальные 0-2 нг/л. Если осмолярность превышает отметку 280, концентрация гормона определяется с помощью формулы:

АДГ (нг/л) = 0,45 х осмолярность (моль/кг) – 126

Международными стандартами норма вазопрессина не определена. Так как для определения концентрации этого вещества в лабораториях применяются разные методики и реактивы.

Команда нейробиологов из штата Флорида провели интересное исследование о влиянии вазопрессина и окситоцина на выбор полового партнера, спаривание и преданности. В качестве подопытных животных были взяты мыши.

Было выявлено, что при введение концентрации вазопрессина и окситоцина, и после спаривание грызунов, активируется область мозга, которая приводит к верности партнеров.

Обязательным условием верности стало совместное пребывание животных не менее шести часов. Без выполнения этого требования инъекция гормонов не оказывала эффект привязанности.

Вазопрессин не многофункционален, но нарушение его концентрации в крови приводит к развитию заболеваний. Поэтому при появлении нетипичных состояний, связанных с выведением жидкости из организма , нужно обратиться за медицинской помощью и провести обследование


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции