24.10.2019

Как работает слуховой анализатор кратко. Анатомия: строение и функции слухового анализатора. Слуховой анализатор, строение и функции


Звуковые волны представляют собой вибрации, с определенной частотой передающиеся во всех трех средах: жидкой, твердой и газообразной. Для восприятия и анализа их человеком существует орган слуха - ухо, которое состоит из наружной, средней и внутренней частей, способное получать информацию и передавать ее к головному мозгу для обработки. Этот принцип работы в организме человека сходен с характерным для глаз. Строение и функции зрительного и слухового анализаторов похожи между собой, разница в том, что слух не смешивает звуковые частоты, воспринимает их отдельно, скорее, даже разделяя разные голоса и звуки. В свою очередь, глаза соединяют световые волны, получая при этом разные цвета и оттенки.

Слуховой анализатор, строение и функции

Фотографии основных отделов человеческого уха вы можете увидеть в этой статье. Ухо - основной орган слуха у человека, оно принимает звук и передает его дальше в мозг. Строение и функции слухового анализатора гораздо шире возможностей одного только уха, это слаженная работа передачи импульсов от барабанной перепонки к стволовым и корковым отделам головного мозга, отвечающими за обработку полученных данных.

Орган, отвечающий за механическое восприятие звуков, состоит из трех основных отделов. Строение и функции отделов слухового анализатора различны между собой, но выполняют одну общую работу - восприятие звуков и передача их в мозг для дальнейшего анализа.

Наружное ухо, его особенности и анатомия

Первое, что встречает звуковые волны на пути к восприятию их смысловой нагрузки, это Анатомия его довольно проста: это ушная раковина и наружный слуховой проход, который является связующим звеном между ним и средним ухом. Сама ушная раковина состоит из хрящевой пластины толщиной 1 мм, покрытой надхрящницей и кожей, она лишена мышечной ткани и не может двигаться.

Нижняя часть раковины - мочка уха, это жировая клетчатка, покрытая кожей и пронизанная множеством нервных окончаний. Плавно и воронкообразно раковина переходит в слуховой проход, ограниченный козелком спереди и противокозелком сзади. У взрослого человека проход имеет 2,5 см в длину и 0,7-0,9 см в диаметре, он состоит из внутреннего и перепончато-хрящевого отделов. Ограничивается барабанной перепонкой, за которой начинается среднее ухо.

Перепонка представляет собой фиброзную пластину в форме овала, на поверхности которой можно выделить такие элементы, как молоточек, задняя и передняя складки, пупочек и короткий отросток. Строение и функции слухового анализатора, представленные такой частью, как наружное ухо и барабанная перепонка, отвечают за улавливание звуков, их первичную обработку и передачу далее к средней части.

Среднее ухо, его особенности и анатомия

Строение и функции отделов слухового анализатора кардинально отличаются друг от друга, и если с анатомией наружной части все знакомы не понаслышке, то изучению информации о среднем и внутреннем ухе стоит уделить больше внимания. Среднее ухо представляет собой четыре воздухоносные полости, соединенные между собой, и наковальню.

Главная часть, выполняющая основные функции уха - это совмещенная с носоглоткой слуховой трубой, через это отверстие происходит вентиляция всей системы. Сама полость состоит из трех камер, шести стенок и которая, в свою очередь, представлена молоточком, наковальней и стременем. Строение и функции слухового анализатора в области среднего уха преображают полученные от наружной части звуковые волны в механические колебания, после чего передают их жидкости, которая заполняет полость внутренней части уха.

Внутреннее ухо, его особенности и анатомия

Внутреннее ухо представляет самую сложную систему из всех трех отделов слухового аппарата. Оно выглядит как лабиринт, который находится в толще височной кости, и являет собой костную капсулу и включенное в нее перепончатое образование, которое полностью повторяет строение костного лабиринта. Условно все ухо делится на три основные части:

  • средний лабиринт - преддверие;
  • передний лабиринт - улитка;
  • задний лабиринт - три полукружных канала.

Лабиринт полностью повторяет строение костной части, а полость между двумя этими системами заполнена перилимфой, напоминающей по своему составу плазму и спинномозговую жидкость. В свою очередь, полости в самом заполнены эндолимфой, по составу сходной с внутриклеточной жидкостью.

Слуховой анализатор, функция рецепторов внутреннего уха

Функционально работа внутреннего уха делится на две основные функции: передача звуковых частот к мозгу и координация движений человека. Основную роль в передаче звука к отделам головного мозга выполняет улитка, разные части которой воспринимают колебания с различной частотой. Все эти вибрации принимает на себя базилярная мембрана, покрытая волосковыми клетками с пучками стереолиций на верхушке. Именно эти клетки превращают колебания в электрические импульсы, которые идут в головной мозг по слуховому нерву. Каждый волосок мембраны имеет разный размер и принимает звук только строго определенной частоты.

Принцип работы вестибулярного аппарата

Строение и функции слухового анализатора не ограничиваются одним лишь восприятием и переработкой звуков, он играет важную роль во всей двигательной активности человека. За работу вестибулярного аппарата, от которого зависит координация движений, отвечают жидкости, которыми заполнена часть внутреннего уха. Основную роль здесь играет эндолимфа, она работает по принципу гироскопа. Малейший наклон головы приводит ее в движение, она, в свою очередь, заставляет двигаться отолиты, которые раздражают волоски реснитчатого эпителия. С помощью сложных нейронных связей вся эта информация передается в отделы мозга, дальше уже начинается его работа по координации и стабилизации движений и равновесия.

Принцип слаженной работы всех камер уха и головного мозга, преображение звуковых колебаний в информацию

Строение и функции слухового анализатора, кратко изучить которые можно выше, направлены не просто на улавливание звуков определенной частоты, а на их преобразование в информацию, понятную сознанием человека. Вся работа по превращению состоит из следующих основных этапов:

  1. Улавливание звуков и их движение по слуховому проходу, стимулирующие барабанную перепонку к колебанию.
  2. Вибрация трех слуховых косточек внутреннего уха, вызванная колебаниями барабанной перепонки.
  3. Движение жидкости во внутреннем ухе и колебания волосовидных клеток.
  4. Преобразование колебаний в электрические импульсы для дальнейшей их передачи по слуховым нервам.
  5. Продвижение импульсов по слуховому нерву в отделы мозга и преобразование их в информацию.

Слуховой кортекс и анализ информации

Какой отлаженной и идеальной не была бы работа всех отделов уха, все было бы бессмысленно без функций и работы головного мозга, преобразующего все звуковые волны в информацию и руководство к действию. Первое, что встречает звук на своем пути, это слуховой кортекс, находящийся в верхней височной извилине головного мозга. Здесь находятся нейроны, которые отвечают за восприятие и разделение всех диапазонов звука. Если в силу каких-либо повреждений головного мозга, например инсульта, повреждаются эти отделы, то человек может стать слабослышащим или вовсе потерять слух и возможность к восприятию речи.

Возрастные изменения и особенности в работе слухового анализатора

С увеличением возраста человека изменяется работа всех систем, строение, функции и возрастные особенности слухового анализатора не являются исключением. У людей в возрасте часто наблюдается снижение слуха, которое принято считать физиологическим, т. е. нормальным. Это не считается заболеванием, а лишь возрастным изменением под названием персбиакузис, которое не надо лечить, а можно лишь скорректировать с помощью специальных слуховых аппаратов.

Выделяют целый ряд причин, по которым возможно снижение слуха у людей, достигших определенного возрастного порога:

  1. Изменения в наружном ухе - истончение и дряблость ушной раковины, сужение и искривление слухового прохода, потеря его способности к передаче звуковых волн.
  2. Утолщение и помутнение барабанной перепонки.
  3. Снижение подвижности системы косточек внутреннего уха, закостенелость их суставов.
  4. Изменения в отделах головного мозга, отвечающих за переработку и восприятие звуков.

Помимо обычных функциональных изменений у здорового человека, проблемы могут усугубляться осложнениями и последствиями перенесенных отитов, они могут оставлять шрамы на барабанной перепонке, которые провоцируют проблемы в будущем.

После того как ученые-медики изучили такой важный орган, как слуховой анализатор (строение и функции), глухота, вызванная возрастом, перестала быть глобальной проблемой. Слуховые аппараты, направленные на улучшение и оптимизацию работы каждого из отделов системы, помогают пожилым людям жить полноценной жизнью.

Гигиена и уход за органами слуха человека

Чтобы сохранить уши здоровыми, за ними, как и за всем телом, нужен своевременный и аккуратный уход. Но, как это ни парадоксально, в половине случаев проблемы возникают именно из-за чрезмерного ухода, а не из-за его недостатка. Основная причина - неумелое орудование ушными палочками или другими средствами для механической очистки скопившейся серы, задевание барабанной перегородки, ее царапины и возможность случайной перфорации. Во избежание подобных травм следует очищать лишь наружную часть прохода, не используя при этом острые предметы.

Для сохранения слуха в будущем лучше придерживаться правил безопасности:

  • Ограниченное прослушивания музыки с использованием наушников.
  • Использование специальных наушников и берушей при работе на шумных предприятиях.
  • Защита от попадания воды в уши во время плавания в бассейне и водоемах.
  • Профилактика отитов и простудных заболеваний ушей в холодное время года.

Понимание принципов работы слухового анализатора, соблюдение правил гигиены и безопасности дома или на работе помогут сохранить слух и не столкнуться с проблемой его потери в будущем.

Введение

1. Слуховой анализатор

1.1. Рецепция звуковых раздражений

1.2.Функция звукопроводящего аппарата уха

1.3.Внутреннее ухо

2. Резонансная теория слуха

3. Проводящие пути слухового анализатора

4. Корковый отдел слухового анализатора

5. Анализ и синтез звуковых раздражений

6. Факторы, определяющие чувствительность слухового анализатора

Заключение

Список литературы


Введение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. слуховой анализатор ухо

Показания органов чувств являются источниками представлений об окружающем нас мире.

Процесс чувственного познания совершается у человека и животного по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов - ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела - к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений.

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором. «Анализатор - это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы».


1. СЛУХОВОЙ АНАЛИЗАТОР

В процессе эволюции у животных образовался сложный по структуре и функции слуховой анализатор. Слух - это способность животных воспринимать и анализировать звуковые волны.

К периферическому отделу слухового анализатора относятся: 1. Звукоулавливающий аппарат - наружное ухо, 2. Звукопередающий - среднее ухо, 3. Звуковоспринимающий аппарат - внутреннее ухо (улитка с кортиевым органом).

1.1 Рецепция звуковых раздражений

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания боль частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок- натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа- улитка. Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом, так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных - это среднее ухо, или барабанная полость, которая образовалась за счет передней жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

1.2 Функция звукопроводящего аппарата уха

Барабанная полость (рис. 1) сообщается с наружным воздухом через особый канал - слуховую, или евстахиеву трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосфер давления, например при спуске в глубокую шахту, при подъёме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы

способствует выравниванию давления, а потому при изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

Рис. 1. Полусхематическое изображение среднего уха:

1- наружный слуховой проход; 2- барабанная полость; 3 - слуховая труба; 4 - барабанная перепонка; 5 - молоточек; 6 - наковальня; 7 - стремя; 8 - окно преддверия (овальное); Я - окно улитки (круглое); 10- костная ткань.

Внутри барабанной полости находятся три слуховые косточки - молоточек, наковальня и стремя, соединенные между собой суставами. Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего - костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластично кольцевой связки прикреплено основание стремени. Другое отверстие - круглое окно, или окно улитки- затянуто тонкой

соединительнотканной мембраной. Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которое через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укрепление в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30-40 раз. При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Полное удаление барабанной перепонки лишь снижает слух, но не ведет к его потере. Это объясняется тем, что существенную роль в передаче звуковых колебаний играет мембрана круглого окна, которая воспринимает колебания воздуха, находящегося в полости среднего уха.

1.3 Внутреннее ухо

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт (рис. 2). Пространство между стенками костного и перепончатого

лабиринтов заполнено жидкостью - перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня (рис. 3). От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластинкой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается раз на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала.

Рис. 2. Общая схема костного и находящегося в нем перепончатого лабиринта:

1 - кость; 2 - полость среднего уха; 3 -стремя;4 - окно преддверия; 5- окно улитки; 6 - улит; 7 и 8 - отолитовый аппарат (7 - саккулус или круглый мешочек; 8 - утрикулус, или овальный мешочек); 9, 10 и 11 - полукружные каналы 12 - пространство между костным и перепончатым лабиринтами, заполненное перилимфой.


Рис. 3. Схематическое изображение улитки внутреннего уха:

А - костный канал улитки;

В - схема поперечного разреза части улитки; - костный стержень;2 - спиральная костная пластинка; 3 - волокна улиткового нерва;4 - скопление тел первого нейрона слухового проводящего пути; 5 - лестница преддверия; 6-лестница барабана; 7- улитковая часть перепончатого лабиринта;8 - кортиев орган; 9 - основная пластинка.

Функция кортиева органа.

Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки (рис. 4). Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верх концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям смеховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15-20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены кнутри от тоннеля в один ряд, а кнаружи-в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположено в центральном канале костного стержня улитки, где они об так называемый спиральный узел, гомологичный межпозвоночный узлу спинномозговых нервов. Каждая из трех с пол тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волокна клетки, количество которых достигает 15-20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к воз возбуждения в волосковых клетках, которое передает на конечные разветвления нервных волокон.

Рис. 4. Схема строения кортиева органа:

1 - основная пластинка; 2 - костная спиральная пластинка; 3 - спиральный канал; 4 - нервные волокна; 5 - столбовые клетки, образующие тоннель(6); 7 - слуховые, или волосковые, клетки; 8 - опорные клетки; 9- покровная пластинка.


2. РЕЗОНАНСНАЯ ТЕОРИЯ СЛУХА

Среди различных теорий, объясняющих механизм периферического анализа звуков, наиболее обоснованной следует считать резонансную теорию, предложенную Гельмгольцем в 1863 году. Если около открытого рояля воспроизвести музыкальным инструментом или голосом звук определенной высоты, то начнет резонировать, т. е. звучать в ответ, струна, настроенная на тот же самый тон. Изучая структурные особенности основной пластинки улитки, Гельмгольц пришел к выводу, что звуковые волны, приходящие из окружающей среды, вызывают колебания поперечных волокон пластинки по принципу резонанса.

Всего насчитывают в основной пластинке около 24 000 поперечных эластических волокон. Они различны по длине и степени натянутости: самые короткие и сильнее натянутые расположены у основания улитки; чем ближе к ее вершине, тем они длиннее и слабее натянуты. Согласно резонансной теории, различные участки основ пластинки реагируют колебанием своих волокон на звуки разной высоты. Такое представление подтвердилось опытами Л.А. Анд. После выработки у собак условных рефлексов на чистые тоны различной высоты улитку одного уха он полностью удалял, а улитку другого подвергал частичному повреждению. В зависимости от того, какой участок кортиева органа второго уха был поврежден, наблюдалось исчезновение ранее выработанных положительных и отрицательных условных рефлексов на звуки определенной частоты колебаний.

При разрушении кортиева органа ближе к основанию улитки исчезали условные рефлексы на высокие тоны. Чем ближе к верхушке локализовалось повреждение, тем ниже были тоны, утратившие значение условных раздражителей.


3. ПРОВОДЯЩИЕ ПУТИ СЛУХОВОГО АНАЛИЗАТОРА

Первый нейрон проводящих путей слухового анализатора - упомянутые выше клетки, аксоны которых образуют улитковый нерв. Волокна этого нерва входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5). Помимо основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий.

Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм, которые идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Рис. 5. Схема проводящих путей слухового анализатора:

1 - рецепторы кортиева органа; 2 - тела биполярных нейронов; 3 - улитковый нерв; 4 - ядра продолговатого мозга, где расположены тела второго нейрона проводящих путей; 5 - внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 - верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 - нервные волокна, связывающие оба внутренних коленчатых тела; 8 - задние бугры четверохолмия; 9 - начало эфферентных путей, идущих от четверохолмия.


4. КОРКОВЫЙ ОТДЕЛ СЛУХОВОГО АНАЛИЗАТОРА

У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших, полушарий. В той части поверхности височной области, которая представляет собой нижнюю стенку поперечной, или сильвиевой щели, расположено поле 41. К нему, а возможно и к соседнему полю 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.).


5. АНАЛИЗ И СИНТЕЗ ЗВУКОВЫХ РАЗДРАЖЕНИЙ

Анализ звуковых раздражений начинается в периферическом отделе слухового анализатора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражений, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспринимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными клеточными группами, которые повторно приходили в состояние возбуждения под влиянием определённого звукового раздражения или комплекса последовательных звуковых раздражений, устанавливая все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражителей, действующих на другие анализаторы. Так образуются все новые и новые условные связи, обогащающие анализ и синтез звуковых раздражений.

В основе анализа и синтеза звуковых речевых раздражений лежит установление условных связей между очагами возбуждения, которые возникают под влиянием непосредственных раздражителей, действующих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обозначающими эти раздражители. Так называемый слуховой центр речи, т. е. тот участок слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражений, иными словами, с пониманием слышимой речи, расположен в основном в левом поле и занимает задний конец поля и прилегающий участок поля.


6. ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ ЧУВСТВИТЕЛЬНОСТЬ СЛУХОВОГО АНАЛИЗАТОРА

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 4000 в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 000 раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10-15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в результате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.


ЗАКЛЮЧЕНИЕ

Слуховой анализатор, совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний.

У высших животных, в том числе у большинства млекопитающих, слуховой анализатор состоит из наружного, среднего и внутреннего уха, слухового нерва и центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга). Верхняя олива - первое образование головного мозга, где конвергирует информация от обоих ушей. Волокна от правого и левого кохлеарных ядер идут на обе стороны. В слуховой анализатор имеются также нисходящие (эфферентные) проводящие пути, идущие от вышележащих отделов к нижележащим (вплоть до рецепторных клеток). В частотном анализе звуков существенное значение имеет улитковая перегородка- своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров. Её амплитудно-частотные характеристики (АЧХ), т. е. зависимость амплитуды колебаний отдельных точек улитковой перегородки от частоты звука, впервые экспериментально измерены венгерским физиком Д. Бекеши и позднее уточнены с помощью Мёссбауэра эффекта.

К наружному уху относится ушная раковина и наружный слуховой проход. Ушная раковина рупообразной формы, подвижна, что дает возможность улавливать и сосредотачивать звук в слуховом проходе.

Наружный слуховой проход представляет собой слегка изогнутый, узкий канал. Железы слухового прохода выделяют секрет -"ушную серу”, предохраняющую барабанную перепонку от высыхания.

Барабанная перепонка отделяет наружное ухо от среднего. Она неправильной формы и неодинаково равномерно натянута, поэтому не имеет собственного периода колебаний, а колеблется в соответствии с длиной поступающей звуковой волны.

Среднее ухо включает слуховые косточку - молоточек, наковальню, чечевицеобразную косточку и стремечко. Эти косточки передают колебания барабанной перепонки на перепонку овального окна, расположенного на границе между средним и внутренним ухом.

Барабанная полость через слуховую (евстахиеву) трубу в носоглотке сообщается с наружным воздухом во время глотания. В результате чего выравнивается давление по обе стороны барабанной перепонки. При резком изменении внешнего давления в любую сторону изменяется натяжение перепонки и развивается состояние временной глухоты, которое устраняется глотательными движениями.

Внутреннее ухо состоит из костного и перепончатого лабиринтов. Перепончатый лабиринт располагается в костном. Имеющееся между ними пространство заполнено перилимфой, а перепончатый лабиринт заполнен эндолимфой. В лабиринте расположены два органа. Один из них, состоящий из преддверия и улитки выполняет слуховую функцию, а второй, состоящий из двух мешочков и трех полукружных каналов - функцию равновесия (вестибулярный аппарат).


СПИСОК ЛИТЕРАТУРЫ

1. http://slovari.yandex.ru/dict/bse/article/00072/11500.htm

2. http://analizator.ucoz.ru/index/0-7

3. http://works.tarefer.ru/10/100119/index.html

4. http://liceum.secna.ru/bl/projects/barnaul2007/borovkov/s_sens_sluh.html

5. http://meduniver.com/Medical/Anatom/513.html

6. http://www.analizator.ru/anatomy.php

7. http://ru.wikipedia.org/wiki/sens_sluh

8. Акаевский А.И. \ Анатомия домашних животных. Изд. 3-е, испр. И доп. М., «Колос», 1975. 592с. С ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

9. Анатомия домашних животных\ И.В. Хрусталёва, Н.В. Михайлов, Я.И. Шнейберг и др.; Под. ред. И.В. Хрусталёвой. – 3-е изд., испр. – М.: КолосС, 2002. – 704с.:ил. – (Учебники и учеб. пособия для студентов высш. учеб. заведений).

10. Климов А.Ф., Акаевский А.Е. Анатомия домашних животных: Учебное пособие. 7-е изд., стер.- СПб.: Издательство «Лань», 2003.- 1040с.- (Учебники для вузов. Специальная литература).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Слуховой анализатор

1.1 Рецепция звуковых раздражений

1.2 Функция звукопроводящего аппарата уха

1.3 Внутреннее ухо

2. Резонансная теория слуха

3. Проводящие пути слухового анализатора

4. Корковый отдел слухового анализатора

5. Анализ и синтез звуковых раздражений

6. Факторы, определяющие чувствительность слухового анализатора

Заключение

Список литературы

Введение

Органами чувств, или анализаторами, называются приборы, посредством которых нервная система получает раздражения от внешней среды, а также от органов самого тела и воспринимает эти раздражения в виде ощущений. слуховой анализатор ухо

Показания органов чувств являются источниками представлений об окружающем нас мире.

Процесс чувственного познания совершается у человека и животного по шести каналам: осязание, слух, зрение, вкус, обоняние, земное тяготение. Шесть органов чувств дают многообразную информацию об окружающем объективном мире, которая отражается в сознании в виде субъективных образов -- ощущений, восприятий и представлений памяти.

Живая протоплазма обладает раздражимостью и способностью отвечать на раздражение. В процессе филогенеза эта способность особенно развивается у специализированных клеток покровного эпителия под влиянием внешних раздражений и клеток кишечного эпителия под влиянием раздражения пищей. Специализированные клетки эпителия уже у кишечнополостных оказываются связанными с нервной системой. В некоторых участках тела, например на щупальцах, в области рта, специализированные клетки, обладающие повышенной возбудимостью, образуют скопления, из которых возникают простейшие органы чувств. В дальнейшем в зависимости от положения этих клеток происходит их специализация по отношению к раздражителям. Так, клетки ротовой области специализируются к восприятию химических раздражений (обоняние, вкус), клетки на выступающих частях тела -- к восприятию механических раздражений (осязание) и т. д.

Развитие органов чувств обусловлено значением их для приспособления к условиям существования. Например, собака тонко воспринимает запах ничтожных концентраций органических кислот, выделяемых телом животных (запах следов), и плохо разбирается в запахе растений, которые не имеют для нее биологического значения.

Возрастание тонкости анализа внешнего мира обусловлено не только усложнением строения и функции органов чувств, но прежде всего усложнением нервной системы. Особенное значение для анализа внешнего мира приобретает развитие головного мозга (особенно его коры), отчего Ф. Энгельс называет органы чувств «орудиями мозга». Возникающие в силу тех или иных раздражений нервные возбуждения воспринимаются нами в форме различных ощущений.

Для возникновения ощущений необходимы: приборы, воспринимающие раздражение, нервы, по которым передается это раздражение, и мозг, где оно превращается в факт сознания. Весь этот аппарат, необходимый для возникновения ощущения, И. П. Павлов назвал анализатором. «Анализатор -- это такой прибор, который имеет своей задачей разлагать сложность внешнего мира на отдельные элементы».

1. Слуховой анализатор

В процессе эволюции у животных образовался сложный по структуре и функции слуховой анализатор. Слух - это способность животных воспринимать и анализировать звуковые волны.

К периферическому отделу слухового анализатора относятся: 1. Звукоулавливающий аппарат - наружное ухо, 2. Звукопередающий - среднее ухо, 3. Звуковоспринимающий аппарат - внутреннее ухо (улитка с кортиевым органом).

1.1 Рецепция звуковых раздражений

Орган слуха. У большинства беспозвоночных нет специальных тонорецепторов, чувствительных только к звуковым колебаниям. Однако у насекомых описаны специфические слуховые органы; они могут быть расположены в различных местах тела и состоят из тонкой натянутой перепонки, отделяющей наружный воздух от слуховой полости. С внутренней стороны перепонки находятся слуховые рецепторные клетки. При помощи этих органов некоторые насекомые могут воспринимать звуки очень большой частоты до 40 и даже до 90 тысяч колебаний в секунду.

У низших позвоночных периферический слуховой орган вместе с вестибулярным аппаратом дифференцируется из переднего конца органа боковой линии, рецепторы которого воспринимают колебания водной среды. Ослепленная щука при условии сохранения органа боковой линии схватывает проплывающую мимо рыбу и передвигается, не натыкаясь на встречные предметы, которые отражают колебания воды, производимые движениями щуки. Колебания боль частоты воспринимаются только развившимся из переднего конца органа боковой линии мешочком и его слепым выростом, получившим название лагены (lagena). У амфибий (и особенно у рептилий) ближе к основанию лагены появляется особый слуховой участок-- натянутая перепонка, состоящая из параллельно расположенных соединительнотканных волоконец. У млекопитающих за счет разрастания этого участка слепой вырост резко удлиняется. Изгибаясь, он принимает форму раковины улитки с различным у разных животных числом витков. Отсюда и название этого органа-- улитка. Ухо как периферический орган слухового анализатора состоит не только из рецепторного аппарата, скрытого в толще височной кости и образующего вместе с вестибулярным аппаратом, так называемое внутреннее ухо. Существенное значение имеют те части уха, которые связаны с улавливанием звуков и их проведением к рецепторному аппарату.

Звукопроводящий аппарат всех наземных животных -- это среднее ухо, или барабанная полость, которая образовалась за счет передней жаберной щели. Уже у рептилий в этой полости находится слуховая косточка, облегчающая передачу звуковых колебаний. У млекопитающих имеются три сочлененные между собой косточки, способствующие увеличению силы звуковых колебаний. Звукоулавливающий аппарат, или наружное ухо, состоит из наружного слухового прохода и ушной раковины, которая впервые появляется у млекопитающих. У многих из них она подвижна, что позволяет направлять ее в сторону появления звуков и тем самым лучше их улавливать.

1.2 Функция звукопроводящего аппарата уха

Барабанная полость (рис. 1) сообщается с наружным воздухом через особый канал -- слуховую, или евстахиеву трубу, наружное отверстие которой находится в стенке носоглотки. Обычно оно закрыто, но в момент глотания раскрывается. При резком изменении атмосфер давления, например при спуске в глубокую шахту, при подъёме или приземлении самолета, может возникнуть значительная разница между давлением наружного воздуха и давлением воздуха в барабанной полости, что вызывает неприятные ощущения, а иногда и повреждение барабанной перепонки. Раскрытие отверстия слуховой трубы способствует выравниванию давления, а потому при изменении давления наружного воздуха рекомендуют производить частые глотательные движения.

Рис. 1. Полусхематическое изображение среднего уха:

1-- наружный слуховой проход; 2-- барабанная полость; 3 -- слуховая труба; 4 -- барабанная перепонка; 5 -- молоточек; 6 -- наковальня; 7 -- стремя; 8 -- окно преддверия (овальное); Я -- окно улитки (круглое); 10-- костная ткань.

Внутри барабанной полости находятся три слуховые косточки -- молоточек, наковальня и стремя, соединенные между собой суставами. Среднее ухо отделено от наружного барабанной перепонкой, а от внутреннего -- костной перегородкой с двумя отверстиями. Одно из них называется овальным окном или окном преддверия. К его краям при помощи эластично кольцевой связки прикреплено основание стремени. Другое отверстие -- круглое окно, или окно улитки-- затянуто тонкой соединительнотканной мембраной. Воздушные звуковые волны, попадая в слуховой проход, вызывают колебания барабанной перепонки, которое через систему слуховых косточек, а также через воздух, находящийся в среднем ухе, передаются перилимфе внутреннего уха. Сочлененные между собой слуховые косточки можно рассматривать как рычаг первого рода, длинное плечо которого соединено с барабанной перепонкой, а короткое укрепление в овальном окне. При передаче движения с длинного на короткое плечо происходит уменьшение размаха (амплитуды) за счет увеличения развиваемой силы. Значительное увеличение силы звуковых колебаний происходит еще и потому, что поверхность основания стремени во много раз меньше поверхности барабанной перепонки. В целом сила звуковых колебаний увеличивается, по крайней мере, в 30--40 раз. При мощных звуках вследствие сокращения мышц барабанной полости увеличивается напряжение барабанной перепонки и уменьшается подвижность основания стремени, что ведет к понижению силы передаваемых колебаний.

Полное удаление барабанной перепонки лишь снижает слух, но не ведет к его потере. Это объясняется тем, что существенную роль в передаче звуковых колебаний играет мембрана круглого окна, которая воспринимает колебания воздуха, находящегося в полости среднего уха.

1.3 Внутреннее ухо

Внутреннее ухо представляет собой сложную систему каналов, находящихся в пирамиде височной кости и получивших название костного лабиринта. Расположенные в нем улитка и вестибулярный аппарат образуют перепончатый лабиринт (рис. 2). Пространство между стенками костного и перепончатого лабиринтов заполнено жидкостью -- перилимфой. К слуховому анализатору относится только передняя часть перепончатого лабиринта, которая расположена внутри костного канала улитки и вместе с ним образует два с половиной оборота вокруг костного стержня (рис. 3). От костного стержня внутрь канала отходит отросток в виде винтообразной спиральной пластинки, широкой у основания улитки и постепенно суживающейся к ее вершине. Эта пластинка не доходит до противоположной, наружной стенки канала. Между пластинкой и наружной стенкой расположена улитковая часть перепончатого лабиринта, вследствие чего весь канал оказывается раз на два этажа, или прохода.

Один из них сообщается с преддверием костного лабиринта и называется лестницей преддверия, другой начинается от окна улитки, граничащего с барабанной полостью, и называется лестницей барабана. Оба прохода сообщаются только в верхнем, узком конце улитки.

На поперечном разрезе улитковая часть перепончатого лабиринта имеет форму вытянутого треугольника. Его нижняя сторона, граничащая с лестницей барабана, образована основной пластинкой, которая состоит из погруженных в гомогенную массу тончайших эластических соединительнотканных волокон, натянутых между свободным краем спиральной костной пластинки и наружной стенкой канала улитки. Верхняя сторона треугольника граничит с лестницей преддверия, отходя под острым углом от верхней поверхности спиральной костной пластинки и направляясь, как и основная пластинка, к наружной стенке канала улитки. Третья, самая короткая сторона треугольника состоит из соединительной ткани, плотно сращенной с наружной стенкой костного канала.

Рис. 2. Общая схема костного и находящегося в нем перепончатого лабиринта:

1 -- кость; 2 -- полость среднего уха; 3 --стремя;4 -- окно преддверия; 5-- окно улитки; 6 -- улит; 7 и 8 -- отолитовый аппарат (7 -- саккулус или круглый мешочек; 8 -- утрикулус, или овальный мешочек); 9, 10 и 11 -- полукружные каналы 12 -- пространство между костным и перепончатым лабиринтами, заполненное перилимфой.

Рис. 3. Схематическое изображение улитки внутреннего уха:

А -- костный канал улитки;

В -- схема поперечного разреза части улитки; -- костный стержень;2 -- спиральная костная пластинка; 3 -- волокна улиткового нерва;4 -- скопление тел первого нейрона слухового проводящего пути; 5 -- лестница преддверия; 6--лестница барабана; 7-- улитковая часть перепончатого лабиринта;8 -- кортиев орган; 9 -- основная пластинка.

Функция кортиева органа.

Рецепторный аппарат слухового анализатора, или спиральный кортиев орган, расположен внутри улитковой части перепончатого лабиринта на верхней поверхности основной пластинки (рис. 4). Вдоль внутренней части основной пластинки, на некотором расстоянии друг от друга, расположены два ряда столбовых клеток, которые, соприкасаясь своими верх концами, отграничивают свободное треугольное пространство, или тоннель. По обе стороны от него находятся чувствительные к звуковым колебаниям смеховые, или волосковые, клетки, каждая из которых на своей верхней свободной поверхности имеет 15--20 небольших тончайших волосков. Концы волосков погружены в покровную пластинку, она укреплена на костной спиральной пластинке и свободным концом покрывает кортиев орган. Волосковые клетки расположены кнутри от тоннеля в один ряд, а кнаружи--в три ряда. От основной пластинки они отделены опорными клетками.

К основаниям волосковых клеток подходят конечные разветвления волокон биполярных нервных клеток, тела которых расположено в центральном канале костного стержня улитки, где они об так называемый спиральный узел, гомологичный межпозвоночный узлу спинномозговых нервов. Каждая из трех с пол тысяч внутренних волосковых клеток связана с одной, а иногда и с двумя отдельными нервными клетками. Наружные волокна клетки, количество которых достигает 15--20 тысяч, могут быть соединены и с несколькими нервными клетками, но при этом каждое нервное волокно дает ответвления только к волосковым клеткам одного и того же ряда.

Перилимфа, окружающая перепончатый аппарат улитки, испытывает давление, которое и меняется соответственно частоте, силе и форме звуковых колебаний. Изменения давления вызывают колебания основной пластинки вместе с расположенными на ней клетками, волоски которых испытывают при этом изменения давления со стороны покровной пластинки. Это, по-видимому, и ведет к воз возбуждения в волосковых клетках, которое передает на конечные разветвления нервных волокон.

Рис. 4. Схема строения кортиева органа:

1 -- основная пластинка; 2 -- костная спиральная пластинка; 3 -- спиральный канал; 4 -- нервные волокна; 5 -- столбовые клетки, образующие тоннель(6); 7 -- слуховые, или волосковые, клетки; 8 -- опорные клетки; 9-- покровная пластинка.

2. Резонансная теория слуха

Среди различных теорий, объясняющих механизм периферического анализа звуков, наиболее обоснованной следует считать резонансную теорию, предложенную Гельмгольцем в 1863 году. Если около открытого рояля воспроизвести музыкальным инструментом или голосом звук определенной высоты, то начнет резонировать, т. е. звучать в ответ, струна, настроенная на тот же самый тон. Изучая структурные особенности основной пластинки улитки, Гельмгольц пришел к выводу, что звуковые волны, приходящие из окружающей среды, вызывают колебания поперечных волокон пластинки по принципу резонанса.

Всего насчитывают в основной пластинке около 24 000 поперечных эластических волокон. Они различны по длине и степени натянутости: самые короткие и сильнее натянутые расположены у основания улитки; чем ближе к ее вершине, тем они длиннее и слабее натянуты. Согласно резонансной теории, различные участки основ пластинки реагируют колебанием своих волокон на звуки разной высоты. Такое представление подтвердилось опытами Л.А. Анд. После выработки у собак условных рефлексов на чистые тоны различной высоты улитку одного уха он полностью удалял, а улитку другого подвергал частичному повреждению. В зависимости от того, какой участок кортиева органа второго уха был поврежден, наблюдалось исчезновение ранее выработанных положительных и отрицательных условных рефлексов на звуки определенной частоты колебаний.

При разрушении кортиева органа ближе к основанию улитки исчезали условные рефлексы на высокие тоны. Чем ближе к верхушке локализовалось повреждение, тем ниже были тоны, утратившие значение условных раздражителей.

3. Проводящие пути слухового анализатора

Первый нейрон проводящих путей слухового анализатора -- упомянутые выше клетки, аксоны которых образуют улитковый нерв. Волокна этого нерва входят в продолговатый мозг и оканчиваются в ядрах, где расположены клетки второго нейрона проводящих путей. Аксоны клеток второго нейрона доходят до внутреннего коленчатого тела, главным образом противоположной стороны. Здесь начинается третий нейрон, по которому импульсы достигают слуховой области коры больших полушарий (рис. 5). Помимо основного, проводящего пути, связывающего периферический отдел слухового анализатора с его центральным, корковым отделом, существуют и другие пути, через которые могут осуществляться рефлекторные реакции на раздражение органа слуха у животного и после удаления больших полушарий.

Особое значение имеют ориентировочные реакции на звук. Они осуществляются при участии четверохолмия, к задним и отчасти передним буграм, которые идут коллатерали волокон, направляющихся к внутреннему коленчатому телу.

Рис. 5. Схема проводящих путей слухового анализатора:

1 -- рецепторы кортиева органа; 2 -- тела биполярных нейронов; 3 -- улитковый нерв; 4 -- ядра продолговатого мозга, где расположены тела второго нейрона проводящих путей; 5 -- внутреннее коленчатое тело, где начинается третий нейрон основных проводящих путей; 6 -- верхняя поверхность височной доли коры больших полушарий (нижняя стенка поперечной щели), где оканчивается третий нейрон; 7 -- нервные волокна, связывающие оба внутренних коленчатых тела; 8 -- задние бугры четверохолмия; 9 -- начало эфферентных путей, идущих от четверохолмия.

4. Корковый отдел слухового анализатора

У человека ядро коркового отдела слухового анализатора расположено в височной, области коры больших, полушарий. В той части поверхности височной области, которая представляет собой нижнюю стенку поперечной, или сильвиевой щели, расположено поле 41. К нему, а возможно и к соседнему полю 42, направляется основная масса волокон от внутреннего коленчатого тела. Наблюдения показали, что при разрушении указанных полей наступает полная глухота. Однако в тех случаях, когда поражение ограничивается одним полу, может наступить небольшое и нередко лишь временное понижение слуха. Это объясняется тем, что проводящие пути слухового анализатора неполностью перекрещиваются. К тому же оба внутренних коленчатых тела связаны между собой промежуточными нейронами, через которые импульсы могут переходить с правой стороны на левую и обратно. В результате корковые клетки каждого полушария получают импульсы с обоих кортиевых органов.

От коркового отдела слухового анализатора идут эфферентные пути к нижележащим отделам мозга, и прежде всего к внутреннему коленчатому телу и к задним буграм четверохолмия. Через них осуществляются корковые двигательные рефлексы на звуковые раздражители. Путем раздражения слуховой области коры можно вызвать у животного ориентировочную реакцию настораживания (движения ушной раковины, поворот головы и т. п.).

5 . Анализ и синтез звуковых раздражений

Анализ звуковых раздражений начинается в периферическом отделе слухового анализатора, что обеспечивается особенностями строения улитки, и прежде всего основной пластинки, каждый участок которой колеблется в ответ на звуки только определенной высоты.

Высший анализ и синтез звуковых раздражений, основанный на образовании положительных и отрицательных условных связей, происходит в корковом отделе анализатора. Каждый звук, воспринимаемый кортиевым органом, приводит в состояние возбуждения определенные клеточные группы поля 41 и соседних с ним полей. Отсюда возбуждение распространяется в другие пункты коры больших полушарий, особенно в поля 22 и 37. Между различными клеточными группами, которые повторно приходили в состояние возбуждения под влиянием определённого звукового раздражения или комплекса последовательных звуковых раздражений, устанавливая все более прочные условные связи. Они устанавливаются также между очагами возбуждения в слуховом анализаторе и теми очагами, которые одновременно возникают под влиянием раздражителей, действующих на другие анализаторы. Так образуются все новые и новые условные связи, обогащающие анализ и синтез звуковых раздражений.

В основе анализа и синтеза звуковых речевых раздражений лежит установление условных связей между очагами возбуждения, которые возникают под влиянием непосредственных раздражителей, действующих на различные анализаторы, и теми очагами, которые вызываются звуковыми речевыми сигналами, обозначающими эти раздражители. Так называемый слуховой центр речи, т. е. тот участок слухового анализатора, функция которого связана с речевым анализом и синтезом звуковых раздражений, иными словами, с пониманием слышимой речи, расположен в основном в левом поле и занимает задний конец поля и прилегающий участок поля.

6. Факторы, определяющие чувствительность слухового анализатора

Ухо человека особенно чувствительно к частоте звуковых и - колебаний от 1030 до 4000 в секунду. Чувствительность к более высоким и более низким звукам значительно падает, особенно с приближением к нижнему и верхнему пределам воспринимаемых частот. Так, для звуков, частота колебаний которых приближается к 20 или к 20 000 в секунду, порог повышается в 10 000 раз, если определять силу звука по производимому им давлению. С возрастом чувствительность слухового анализатора, как правило, значительно понижается, но главным образом к звукам большой частоты, к низким же (до 1000 колебаний в секунду) остается почти неизменным вплоть до старческого возраста.

В условиях полной тишины чувствительность слуха повышается. Если же начинает звучать тон определенной высоты и неизменной интенсивности, то вследствие адаптации к нему ощущение громкости снижается сначала быстро, а потом все более медленно. Однако, хотя и в меньшей степени, понижается чувствительность к звукам, более или менее близким по частоте колебаний к звучащему тону. Однако обычно адаптация не распространяется на весь диапазон воспринимаемых звуков. По прекращении звука, вследствие адаптации к тишине уже через 10--15 секунд восстанавливается прежний уровень чувствительности.

Частично адаптация зависит от периферического отдела анализатора, а именно от изменения, как усиливающей функции звукового аппарата, так и возбудимости волосковых клеток кортиева органа. Центральный отдел анализатора также принимает участие в явлениях адаптации, о чем свидетельствует хотя бы тот факт, что при действии звука только на одно ухо сдвиги чувствительности наблюдаются в обоих ушах. На чувствительность слухового анализатора, и в частности на процесс адаптации, оказывают влияние изменения корковой возбудимости, которые возникают в результате как иррадиации, так и взаимной индукции возбуждения и торможения при раздражении рецепторов других анализаторов.

Изменяется чувствительность и при одновременном действии двух тонов разной высоты. В последнем случае слабый звук заглушается более сильным главным образом потому, что очаг возбуждения, возникает в коре под влиянием сильного звука, понижает вследствие отрицательной индукции возбудимость других участков коркового отдела того же анализатора.

Длительное воздействие сильных звуков может вызвать запретное торможение корковых клеток. В результате чувствительность слухового анализатора резко понижается. Такое состояние сохраняется некоторое время после того, как прекратилось раздражение.

Заключение

Слуховой анализатор, совокупность механических, рецепторных и нервных структур, деятельность которых обеспечивает восприятие человеком и животными звуковых колебаний.

У высших животных, в том числе у большинства млекопитающих, слуховой анализатор состоит из наружного, среднего и внутреннего уха, слухового нерва и центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга). Верхняя олива -- первое образование головного мозга, где конвергирует информация от обоих ушей. Волокна от правого и левого кохлеарных ядер идут на обе стороны. В слуховой анализатор имеются также нисходящие (эфферентные) проводящие пути, идущие от вышележащих отделов к нижележащим (вплоть до рецепторных клеток). В частотном анализе звуков существенное значение имеет улитковая перегородка-- своеобразный механический спектральный анализатор, функционирующий как ряд взаимно рассогласованных фильтров. Её амплитудно-частотные характеристики (АЧХ), т. е. зависимость амплитуды колебаний отдельных точек улитковой перегородки от частоты звука, впервые экспериментально измерены венгерским физиком Д. Бекеши и позднее уточнены с помощью Мёссбауэра эффекта.

К наружному уху относится ушная раковина и наружный слуховой проход. Ушная раковина рупообразной формы, подвижна, что дает возможность улавливать и сосредотачивать звук в слуховом проходе.

Наружный слуховой проход представляет собой слегка изогнутый, узкий канал. Железы слухового прохода выделяют секрет -"ушную серу”, предохраняющую барабанную перепонку от высыхания.

Барабанная перепонка отделяет наружное ухо от среднего. Она неправильной формы и неодинаково равномерно натянута, поэтому не имеет собственного периода колебаний, а колеблется в соответствии с длиной поступающей звуковой волны.

Среднее ухо включает слуховые косточку - молоточек, наковальню, чечевицеобразную косточку и стремечко. Эти косточки передают колебания барабанной перепонки на перепонку овального окна, расположенного на границе между средним и внутренним ухом.

Барабанная полость через слуховую (евстахиеву) трубу в носоглотке сообщается с наружным воздухом во время глотания. В результате чего выравнивается давление по обе стороны барабанной перепонки. При резком изменении внешнего давления в любую сторону изменяется натяжение перепонки и развивается состояние временной глухоты, которое устраняется глотательными движениями.

Внутреннее ухо состоит из костного и перепончатого лабиринтов. Перепончатый лабиринт располагается в костном. Имеющееся между ними пространство заполнено перилимфой, а перепончатый лабиринт заполнен эндолимфой. В лабиринте расположены два органа. Один из них, состоящий из преддверия и улитки выполняет слуховую функцию, а второй, состоящий из двух мешочков и трех полукружных каналов - функцию равновесия (вестибулярный аппарат).

слуховой анализатор ухо звуковой

Список литературы

1. http://slovari.yandex.ru/dict/bse/article/00072/11500.htm

2. http://analizator.ucoz.ru/index/0-7

3. http://works.tarefer.ru/10/100119/index.html

4. http://liceum.secna.ru/bl/projects/barnaul2007/borovkov/s_sens_sluh.html

5. http://meduniver.com/Medical/Anatom/513.html

6. http://www.analizator.ru/anatomy.php

7. http://ru.wikipedia.org/wiki/sens_sluh

8. Акаевский А.И. \ Анатомия домашних животных. Изд. 3-е, испр. И доп. М., «Колос», 1975. 592с. С ил. (Учебники и учеб. пособия для высш. с.-х. учеб. заведений).

9. Анатомия домашних животных\ И.В. Хрусталёва, Н.В. Михайлов, Я.И. Шнейберг и др.; Под. ред. И.В. Хрусталёвой. - 3-е изд., испр. - М.: КолосС, 2002. - 704с.:ил. - (Учебники и учеб. пособия для студентов высш. учеб. заведений).

10. Климов А.Ф., Акаевский А.Е. Анатомия домашних животных: Учебное пособие. 7-е изд., стер.- СПб.: Издательство «Лань», 2003.- 1040с.- (Учебники для вузов. Специальная литература).

Размещено на Allbest.ru

...

Подобные документы

    Понятие об анализаторах и их роль в познании окружающего мира. Строение и функции органа слуха человека. Структура звукопроводящего аппарата уха. Центральная слуховая система, переработка информации в центрах. Методы исследования слухового анализатора.

    курсовая работа , добавлен 23.02.2012

    Расположение и функции внешнего, среднего и внутреннего уха. Строение костного лабиринта. Основные уровни организации слухового анализатора. Последствия поражения кортиевого органа, слухового нерва, мозжечка, медиального коленчатого тела, пучка Грациоле.

    презентация , добавлен 11.11.2010

    Зона коры больших полушарий. Значение зрения. Строение глаза. Зрительный и слуховой анализатор. Рецепторы человека: зрительный, слуховой, тактильный, болевой, температурный, обонятельный, вкусовой, давления, кинетический, вестибулярный. Строение кожи.

    презентация , добавлен 16.05.2013

    Исследование остроты слуха у детей и взрослых. Функция слухового анализатора. Критерии частоты и силы (громкости) тонов. Периферический отдел слуховой сенсорной системы человека. Звукопроведение, звуковосприятие, слуховая чувствительность и адаптация.

    реферат , добавлен 27.08.2013

    Импедансометрия как метод исследования, который позволяет определить тонус и подвижность барабанной перепонки, цепи слуховых косточек, давление в среднем ухе. Цель и методики проведения тимпанометрии. Тест оценки вентиляционной функции слуховой трубы.

    презентация , добавлен 12.01.2017

    Схема отделов уха; расположение вестибулярного и слухового аппаратов. Распространение звуковой волны. Секреция эндо- и перилимфы внутреннего уха. "Струны" мембраны кортиевого органа. Предвокализационный рефлекс; сильный звук и реакция мышц среднего уха.

    презентация , добавлен 29.08.2013

    Физиология коры больших полушарий и слухового анализатора. Влияние электромагнитного излучения на кору больших полушарий. Взаимосвязь количества ошибок в ответ на неречевой звук с количеством минут, за которые студент использует мобильный телефон.

    курсовая работа , добавлен 20.07.2014

    Изучение строения сетчатки, чувствительность глаза к восприятию света. Бинокулярное и цветовое зрение. Слуховой анализатор, строение среднего и внутреннего уха. Вкусовой, обонятельный, тактильный и температурный анализаторы, их характеристика и значение.

    реферат , добавлен 23.06.2010

    Понятие и функции органов чувств как анатомических образований, воспринимающих энергию внешнего воздействия, трансформирующих ее в нервный импульс и передающих этот импульс в мозг. Строение и значение глаза. Проводящий путь зрительного анализатора.

    презентация , добавлен 27.08.2013

    Наружное ухо: части, иннервация и кровоснабжение. Наружный слуховой проход: костная и хрящевая части, изгибы, щели. Улитка, улитковый проток, спиральный орган: строение и функция. Проводящие пути и центры слухового анализатора. Лучевая анатомия уха.

Слух человека устроен так, чтобы улавливать широкий диапазон звуковых волн и превращать их в электрические импульсы, чтобы направлять в мозг для анализа. В отличие от связанного с органом слуха вестибулярного аппарата, нормально работающего практически с рождения человека, слух формируется достаточно долго. Формирование слухового анализатора заканчивается не раньше, чем в 12 лет, и наибольшая острота слуха достигается к 14-19-летнему возрасту. слуховой анализатор имеет три отдела: периферический или орган слуха (ухо); проводниковый, включающий нервные пути; корковый, расположенный в височной доле головного мозга. Причём в коре больших полушарий находится несколько слуховых центров. Некоторые из них (нижние височные извилины) предназначены для восприятия более простых звуков – тонов и шумов, другие связаны со сложнейшими звуковыми ощущениями, которые возникают в то время, когда человек говорит сам, слушает речь или музыку.

Строение человеческого уха Слуховой анализатор человека воспринимает звуковые волны с частотой колебаний от 16 до 20 тыс. в секунду (16-20000 герц, Гц). Верхний звуковой порог у взрослого человека составляет 20 000 Гц; нижний порог – в пределах от 12 до 24 Гц. Дети имеют более высокую верхнюю границу слуха в районе 22000 Гц; у пожилых людей, наоборот, она, обычно, ниже – около 15 000 Гц. Наибольшей восприимчивостью ухо обладает к звукам с частотой колебаний в пределах от 1000 до 4000 Гц. Ниже 1000 Гц и выше 4000 Гц возбудимость органа слуха сильно понижается. Ухо - сложный вестибулярно-слуховой орган. Как и все наши органы чувств, орган слуха человека выполняет две функции. Он воспринимает звуковые волны и отвечает за положение тела в пространстве и способность удерживать равновесие. Это парный орган, который размещается в височных костях черепа, ограничиваясь снаружи ушными раковинами. Рецепторные аппараты слуховой и вестибулярной системы расположены во внутреннем ухе. Устройство вестибулярной системы можно посмотреть отдельно, а сейчас перейдём к описанию строения частей органа слуха.



Орган слуха состоит из 3-х частей: наружное, среднее и внутреннее ухо, причём наружное и среднее ухо играют роль звукопроводящего аппарата, а внутреннее ухо – звуковоспринимающего. Процесс начинается со звука - колебательного движения воздуха или вибрации, при которой к слушателю распространяются звуковые волны, достигающие, в конце концов, барабанной перепонки. При этом наше ухо чрезвычайно чувствительно и способно почувствовать изменения давления всего в 1-10 атмосфер.

Строение наружного уха Наружное ухо состоит из ушной раковины и наружного слухового прохода. Вначале звук достигает ушных раковин, которые действуют как приёмники звуковых волн. Ушная раковина образована эластичным хрящом, снаружи покрытым кожей. Определение направления звука у человека связано с бинауральным слухом, т. е. со слышанием двумя ушами. Любой боковой звук поступает в одно ухо раньше, чем в другое. Разница во времени (несколько долей миллисекунды) прихода звуковых волн, воспринимаемых левым и правым ухом, даёт возможность определить направление звука. Иными словами, естественное восприятие нами звука – стереофоническое.

Ушная раковина человека имеет свой неповторимый рельеф из выпуклостей, вогнутостей и канавок. Это необходимо для тончайшего акустического анализа, позволяя также распознавать направление и источник звука. Складки человеческой ушной раковины вносят в поступающий в слуховой проход звук небольшие частотные искажения, зависящие от горизонтальной и вертикальной локализации источника звука. Таким образом, мозг получает дополнительную информацию для уточнения местоположения источника звука. Этот эффект иногда используется в акустике, в том числе для создания ощущения объёмного звука при проектировании динамиков и наушников. Ушная раковина также усиливает звуковые волны, которые далее входят в наружный слуховой проход - пространство от раковины к барабанной перепонке длиной около 2,5 см и диаметром около 0,7 см. Слуховой проход имеет слабо выраженный резонанс на частоте около 3000Гц.

Еще одной интересной характеристикой наружного слухового прохода является наличие ушной серы, которая постоянно выделяется из желёз. Ушная сера - воскообразный секрет 4000 сальных и серных желез слухового прохода. В ее функции входит защита кожи этого прохода от бактериальной инфекции и инородных частиц или, например, насекомых, которые могут попасть в ухо. У разных людей количество серы различно. При избыточном скоплении серы возможно образование серной пробки. Если слуховой проход при этом полностью закупорен, появляются ощущения заложенности уха и понижение слуха, в том числе резонанс собственного голоса в заложенном ухе. Эти нарушения развиваются внезапно, чаще всего при попадании в наружный слуховой проход воды во время купания.

Наружное и среднее ухо разделяются барабанной перепонкой, представляющей собой тонкую соединительно-тканную пластинку. Толщина барабанной перепонки – около 0,1 мм, а диаметр около 9 миллиметров. Снаружи она покрыта эпителием, а изнутри – слизистой оболочкой. Барабанная перепонка располагается наклонно и начинает колебаться при попадании на нее звуковых волн. Барабанная перепонка чрезвычайно чувствительна, однако после определения и передачи колебания перепонка возвращается в исходное положение всего за 0,005 секунды.

Строение среднего уха В нашем ухе звук движется к чувствительным клеткам, воспринимающим звуковые сигналы, через согласующее и усиливающее устройство – среднее ухо. Среднее ухо представляет собой барабанную полость, которая имеет форму маленького плоского барабана с туго натянутой колеблющейся перепонкой и слуховой (евстахиевой) трубой. В полости среднего уха находятся сочленяющиеся между собой слуховые косточки – молоточек, наковальня и стремечко. Крошечные мышцы способствуют передаче звука, регулируя движение этих косточек. Достигнув барабанной перепонки, звук заставляет ее колебаться. Рукоятка молоточка вплетена в барабанную перепонку и, покачиваясь, она приводит молоточек в движение. Другим концом молоточек соединен с наковальней, а последняя с помощью сустава подвижно сочленена со стремечком. К стремечку прикреплена стременная мышца, которая удерживает его у перепонки овального окна (окна преддверия), отделяющего среднее ухо от внутреннего, заполненного жидкостью. В результате передачи движения стремечко, основание которого напоминает поршень, постоянно толкается в перепонку овального окна внутреннего уха.

Функцией слуховых косточек является обеспечение увеличения давления звуковой волны при передаче от барабанной перепонки на перепонку овального окна. Этот усилитель (примерно в 30–40 раз) помогает слабым звуковым волнам, падающим на барабанную перепонку, преодолеть сопротивление мембраны овального окна и передать колебания во внутреннее ухо. При переходе звуковой волны из воздушной среды в жидкую значительная часть звуковой энергии теряется и, поэтому, необходим механизм усиления звука. Однако, при громком звуке этот же механизм понижает чувствительность всей системы, чтобы её не повредить.

Давление воздуха внутри среднего уха должно быть таким же, как и давление вне барабанной перепонки, для обеспечения нормальных условий её колебаний. Для выравнивания давления барабанная полость соединена с носоглоткой при помощи слуховой (евстахиевой) трубы длиной 3,5 см и диаметром около 2 мм. При глотании, зевании и жевании евстахиева труба открывается, впуская внешний воздух. При изменении внешнего давления иногда «закладывает» уши, что обычно решается тем, что рефлекторно вызывается зевота. Опыт показывает, что ещё более эффективно заложенность ушей решается глотательными движениями. Нарушения работы трубки приводит к болям и даже кровотечению в ухе.

Строение внутреннего уха. Механические движения косточек во внутреннем ухе превращаются в электрические сигналы. Внутреннее ухо - полое костное образование в височной кости, разделенное на костные каналы и полости, содержащие рецепторные аппараты слухового анализатора и органа равновесия. Этот отдел органа слуха и равновесия из-за своей замысловатой формы называется лабиринтом. Костный лабиринт состоит из преддверия, улитки и полукружных каналов, но непосредственное отношение к слуху имеет только улитка. Улитка представляет собой канал длиной около 32 мм, свёрнутый спиралью и заполненный лимфатическими жидкостями. Получив вибрацию от барабанной перепонки, стремечко своим движением давит на мембрану окна преддверия и создаёт колебания давления внутри жидкости улитки. Эта вибрация распространяется в жидкости улитки и достигает там собственно органа слуха, спирального или кортиева органа. Он и превращает вибрации жидкости в электрические сигналы, которые через нервы идут в головной мозг. Чтобы стремечко могло передать давление через жидкость, в центральной части лабиринта, преддверии, есть круглое окно улитки, покрытое гибкой мембраной. Когда поршень стремечка входит в овальное окно преддверия, мембрана окна улитки выпячивается под давлением жидкости улитки. Колебания в замкнутой полости возможны лишь при наличии отдачи. Роль такой отдачи и выполняет перепонка круглого окна.

Костный лабиринт улитки завёрнут в форме спирали с 2,5 оборотами и содержит внутри перепончатый лабиринт такой же формы. В некоторых местах перепончатый лабиринт соединительными тяжами прикреплён к надкостнице костного лабиринта. Между костным и перепончатым лабиринтом находится жидкость – перилимфа. Звуковая волна, усиленная на 30-40 дБ с помощью системы барабанная перепонка - слуховые косточки, достигает окна преддверия, и ее колебания передаются на перилимфу. Звуковая волна проходит сначала по перилимфе до верхушки спирали, где через отверстие колебания распространяются до окна улитки. Внутри перепончатый лабиринт заполнен другой жидкостью – эндолимфой. Жидкость внутри перепончатого лабиринта (улитковый проток) сверху отделена от перилимфы гибкой покровной пластинкой, а снизу - эластичной основной мембраной, составляющими вместе перепончатый лабиринт. На основной мембране находится звуковоспринимающий аппарат, кортиев орган. Основная мембрана состоит из большого количества (24000) фиброзных волокон различной длины, натянутых, как струны. Эти волокна образуют эластическую сеть, которая в целом резонирует строго градуированными колебаниями.

Нервные клетки кортиевого органа превращают колебательные движения пластинок в электрические сигналы. Они называются волосковыми клетками. Внутренние волосковые клетки расположены в один ряд, их насчитывается 3,5 тыс. Наружные волосковые клетки располагаются в три-четыре ряда, их насчитывается 12–20 тыс. Каждая волосковая клетка имеет удлиненную форму, на ней имеется 60–70 мельчайших волосков (стереоцилий) длиной 4–5 мкм.

Вся энергия звука оказывается сосредоточенной в пространстве, ограниченном стенкой костной улитки и основной мембраной (единственное податливое место). Волокна основной мембраны имеют разную длину и, соответственно, разную резонансную частоту. Самые короткие волокна расположены около овального окна, их резонансная частота около 20000 Гц. Самые длинные – в верхушке спирали, имеют резонансную частоту около 16 Гц. Получается, что каждая волосковая клетка, в зависимости от расположения на основной мембране, настроена на определенную звуковую частоту, причем клетки, настроенные на низкие частоты, располагаются в верхней части улитки, а высокие частоты улавливаются клетками нижней части улитки. Когда волосковые клетки по каким-то причинам гибнут, человек теряет способность воспринимать звуки соответствующих частот.

Звуковая волна распространяется по перилимфе от окна преддверия до окна улитки практически мгновенно, примерно за 4*10-5 секунды. Вызванное этой волной гидростатическое давление сдвигает покровную пластинку относительно поверхности кортиева органа. В результате покровная пластинка деформирует пучки стереоцилий волосковых клеток, что приводит к их возбуждению, передающемуся окончаниям первичных сенсорных нейронов.

Различия ионного состава эндолимфы и перилимфы создают разность потенциалов. И между эндолимфой и внутриклеточной средой рецепторных клеток разность потенциалов достигает примерно 0,16 вольт. Столь значительная разность потенциалов способствует возбуждению волосковых клеток даже при действии слабых звуковых сигналов, вызывающих незначительные колебания основной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению регулятора, действующего на окончания волокон слуховых нервов и тем самым возбуждающего их.

Волосковые клетки связаны с окончаниями нервных волокон, по выходе из кортиева органа образующих слуховой нерв (улитковую ветвь преддверно-улиткового нерва). Звуковые волны, преобразованные в электрические импульсы, передаются по слуховому нерву в височную зону коры головного мозга.

Слуховой нерв состоит из тысяч тончайших нервных волокон. Каждое из них начинается от определенного участка улитки и, тем самым, передает определенную звуковую частоту. С каждым волокном слухового нерва связано несколько волосковых клеток, так что в центральную нервную систему приходит около 10000 волокон. Импульсы от низкочастотных звуков, передаются по волокнам, исходящим из верхушки улитки, а от высокочастотных - по волокнам, связанным с ее основанием. Таким образом, функцией внутреннего уха является преобразование механических колебаний в электрические, так как мозг может воспринимать только электрические сигналы.

Орган слуха – это аппарат, через который мы получаем звуковую информацию. Но слышим мы так, как воспринимает, перерабатывает и запоминает наш мозг. В мозгу создаются звуковые представления или образы. И, если в нашей голове звучит музыка или вспоминается чей-то голос, то благодаря тому, что мозг имеет входные фильтры, запоминающее устройство и звуковую карту, и может быть для нас и надоевшим динамиком, и удобным музыкальным центром.

Тема: «Слуховой анализатор»


План

1. Понятие об анализаторах и их роль в познании окружающего мира

2. Строение и функции органа слуха

3. Чувствительность слухового анализатора

4. Гигиена органа слуха ребенка

5. Выявить отклонение от нормы в работе слухового анализатора детей вашей группы


1. Понятие об анализаторах и их роль в познании окружающего мира

Организм и внешний мир – это единое целое. Восприятие окружающей нас среды происходит с помощью органов чувств или анализаторов. Еще Аристотелем были описаны пять основных чувств: зрение, слух, вкус, обоняние и осязание.

Термин «анализатор» (разложение, расчленение) был введен И.П.Павловым в 1909 г. для обозначения совокупности образований, активность которых обеспечивает разложение и анализ в нервной системе раздражителей, воздействующих на организм. «Анализаторы – это такие аппараты, которые разлагают внешний мир на элементы и затем трансформируют раздражение в ощущение» (И.П.Павлов, 1911 – 1913).

Анализатор – это не просто ухо или глаз. Он представляет собой совокупность нервных структур, включающих в себя периферический, воспринимающий аппарат (рецепторы), трансформирующий энергию раздражения в специфический процесс возбуждения; проводниковую часть, представленную периферическими нервами и проводниковыми центрами, она осуществляет передачу возникшего возбуждения в кору головного мозга; центральную часть – нервные центры, расположенные в коре головного мозга, анализирующие поступившую информацию и формирующие соответствующее ощущение, после которого вырабатывается определенная тактика поведения организма. С помощью анализаторов мы объективно воспринимаем внешний мир таким, какой он есть. Это материалистическое понимание вопроса. Напротив, идеалистическая концепция теории познания мира выдвинута немецким физиологом И.Мюллером, который сформулировал закон специфической энергии. Последняя, по мнению И.Мюллера, заложена и формируется в наших органах чувств и эту энергию мы же и воспринимаем в виде определенных ощущений. Но эта теория не верна, так как она базируется на действии неадекватного для данного анализатора раздражения. Интенсивность стимула характеризуется порогом ощущения (восприятия). Абсолютный порог ощущения – это минимальная интенсивность стимула, которая создает соответствующее чувство. Дифференциальный порог – это минимальное различие интенсивностей, которое воспринимается субъектом. Это означает, что анализаторы способны дать количественную оценку прироста ощущения в сторону его увеличения или уменьшения. Так, человек может отличить яркий свет от менее яркого, дать оценку звуку по его высоте, тону и громкости. Периферическая часть анализатора представлена либо специальными рецепторами (сосочки языка, обонятельные волосковые клетки), либо сложно устроенным органом (глаз, ухо). Зрительный анализатор обеспечивает восприятие и анализ световых раздражений, и формирование зрительных образов. Корковый отдел зрительного анализатора расположен в затылочных долях коры больших полушарий головного мозга. Зрительный анализатор участвует в осуществлении письменной речи. Слуховой анализатор обеспечивает восприятие и анализ звуковых раздражений. Корковый отдел слухового анализатора расположен в височной области коры больших полушарий. С помощью слухового анализатора осуществляется устная речь.

Речедвигательный анализатор обеспечивает восприятие и анализ информации, поступающей от органов речи. Корковый отдел речедвигательного анализатора расположен в постцентральной извилине коры больших полушарий. С помощью обратных импульсов, идущих от коры головного мозга к двигательным нервным окончаниям в мышцах органов дыхания и артикуляции, регулируется деятельность речевого аппарата.

2. Строение и функции органа слуха

Орган слуха и равновесия, преддверно-улитковый орган у человека имеет сложное строение, воспринимает колебание звуковых волн и определяет ориентировку положения тела в пространстве.

Преддверно-улитковый орган делится на три части: наружное, среднее и внутреннее ухо. Эти части тесно связаны анатомически и функционально. Наружное и среднее ухо проводит звуковые колебания к внутреннему уху, и таким образом является звукопроводящим аппаратом. Внутреннее ухо, в котором различают костный и перепончатый лабиринты, образует орган слуха и равновесия.

Наружное ухо включает ушную раковину, наружный слуховой проход и барабанную перепонку, которые предназначены для улавливания и проведения звуковых колебаний. Ушная раковина состоит из эластичного хряща и имеет сложную конфигурацию, снаружи покрыта кожей. Хрящ отсутствует в нижней части, так называемой дольке ушной раковины или мочке. Свободный край раковины завернут, и называется завитком, а параллельно ему идущий валик – противозавитком. У переднего края ушной раковины выделяется выступ – козелок, а сзади него располагается противокозелок. Ушная раковина прикрепляется к височной кости связками, имеет рудиментарные мышцы, которые хорошо выражены у животных. Ушная раковина устроена так, чтобы максимально концентрировать звуковые колебания и направлять их в наружное слуховое отверстие.

Наружный слуховой проход представляет собой S-образную трубку, которая снаружи открывается слуховым отверстием и слепо заканчивается в глубине и отделяется от полости среднего уха барабанной перепонкой. Длинна слухового прохода у взрослого человека составляет около 36 мм, диаметр в начале достигает 9 мм, а в узком месте 6 мм. Хрящевая часть, являющаяся продолжением хряща ушной раковины, составляет 1/3 его длины, остальные 2/3 образованы костным каналом височной кости. В месте перехода одной части в другую наружный слуховой проход суженный и изогнутый. Он выстлан кожей и богат жировыми железами, которые выделяют ушную серу.

Барабанная перепонка – тонкая полупрозрачная овальная пластинка размером 11х 9 мм, которая находится на границе наружного и среднего уха. Расположена наискось, с нижней стенкой слухового прохода образует острый угол. Барабанная перепонка состоит из двух частей: большой нижней – натянутой части и меньшей верхней – ненатянутой части. Снаружи она покрыта кожей, основу ее образует соединительная ткань, внутри выстлана слизистой оболочкой. В центре барабанной перепонки есть углубление – пупок, который соответствует прикреплению с внутренней стороны рукояти молоточка.

Среднее ухо включает выстланную слизистой оболочкой и заполненную воздухом барабанную полость (объем около 1 см3) и слуховую (евстахиеву) трубу. Полость среднего уха соединяется с сосцевидной пещерой и через нее – с сосцевидными ячейками сосцевидного отростка.

Барабанная полость находится в толщине пирамиды височной кости, между барабанной перепонкой латерально и костным лабиринтом медиально. Она имеет шесть стенок: 1) верхнюю покрышечную – отделяет ее от полости черепа и находится на верхней поверхности пирамиды височной кости; 2) нижнюю яремную – стенка отделяет барабанную полость от наружного основания черепа, находится на нижней поверхности пирамиды височной кости и соответствует области яремной ямки; 3) медиальную лабиринтную – отделяет барабанную полость от костного лабиринта внутреннего уха. На этой стенке находится овальное отверстие – окно преддверия, закрытое основанием стремени; несколько выше на этой стенке находится выступ лицевого канала, а ниже – окно улитки, закрытое вторичной барабанной перепонкой, которая отделяет барабанную полость от барабанной лестницы; 4) заднюю сосцевидную – отделяет барабанную полость от сосцевидного отростка и имеет отверстие, которое ведет в сосцевидную пещеру, последняя в свою очередь соединяется с сосцевидными ячейками; 5) переднюю сонную – граничит с сонным каналом. Здесь находится барабанное отверстие слуховой трубы, через которую барабанная полость соединяется с носоглоткой; 6) латеральную перепончатую – образована барабанной перепонкой и окружающими ее частями височной кости.

В барабанной полости находятся покрытые слизистой оболочкой три слуховые косточки, а также связки и мышцы. Слуховые косточки имеют небольшие размеры. Соединяясь между собой, они образуют цепь, которая протянулась от барабанной перепонки до овального отверстия. Все косточки соединяются между собой при помощи суставов и покрыты слизистой оболочкой. Молоточек рукояткой сращен с барабанной перепонкой, а головкой при помощи сустава соединяется с наковальней, которая в свою очередь подвижно соединена со стременем. Основание стремени закрывает окно преддверия.

В барабанной полости находятся две мышцы: одна идет от одноименного канала до рукоятки молоточка, а другая – стременная мышца – направляется от задней стенки к задней ножке стремени. При сокращении стременной мышцы изменяется давление основания на перилимфу.

Слуховая труба имеет в среднем длину 35 мм, ширину 2 мм служит для поступления воздуха из глотки в барабанную полость и поддерживает в полости давление, одинаковое с внешним, что очень важно для нормальной работы звукопроводящего аппарата. Слуховая труба имеет хрящевую и костную части, выстлана мерцательным эпителием. Хрящевая часть слуховой трубы начинается глоточным отверстием на боковой стенке носоглотки, направляется вниз и латерально, затем суживается и образует перешеек. Костная часть меньше хрящевой, лежит в одноименной полуканале пирамиды височной кости и открывается в барабанную полость отверстием слуховой трубы.

Внутреннее ухо расположено в толще пирамиды височной кости, отдельно от барабанной полости ее лабиринтной стенкой. Оно состоит из костного и вставленного в него перепончатого лабиринта.

Костный лабиринт состоит из улитки, преддверия и полукружных каналов. Преддверие представляет собой полость небольших размеров и неправильной формы. На латеральной стенке находятся два отверстия: окно преддверия и окно улитки. На медиальной стенке преддверия расположен гребень преддверия, который делит полость преддверия на два углубления – переднее сферическое и заднее эллиптическое. Через отверстие на задней стенке полость преддверия соединяется с костными полукружными каналами, а через отверстие на передней стенке сферическое углубление преддверия соединяется с костным спиральным каналом улитки.

Улитка – передняя часть костного лабиринта, она представляет собой извитый спиральный канал улитки, который образует 2,5 оборота вокруг оси улитки. Основание улитки направленно медиально в сторону внутреннего слухового прохода; верхушка купола улитки – в сторону барабанной полости. Ось улитки лежит горизонтально и называется костным стержнем улитки. Вокруг стержня обвивается костная спиральная пластинка, которая частично перегораживает спиральный канал улитки. У основания этой пластинки находится спиральный канал стержня, где лежит спиральный нервный узел улитки.

Костные полукружные каналы представляют собой три дугообразно изогнутые тонкие трубки, которые лежат в трех взаимно перпендикулярных плоскостях. На поперечном срезе ширина каждого костного полукружного канала составляет около 2 мм. Передний (сагиттальный, верхний) полукружный канал лежит выше других каналов, а верхняя его точка на передней стенке пирамиды образует дугообразное возвышение. Задний (фронтальный) полукружный канал расположен параллельно задней поверхности пирамиды височной кости. Латеральный (горизонтальный) полукружный канал слегка выступает в барабанную полость. Каждый полукружный канал имеет два конца – костные ножки. Одна из них – простая костная ножка, другая – ампулярная костная ножка. Полукружные каналы открываются пятью отверстиями в полость преддверия, причем соседние ножки переднего и заднего клапанов образуют общую костную ножку, которая открывается одним отверстием.

Перепончатый лабиринт по своей форме и структуре совпадает с формой костного лабиринта и отличается только по размеру, так как располагается внутри костного.

Промежуток между костным и перепончатым лабиринтами заполнен перилимфой, а полость перепончатого лабиринта - эндолимфой.

Стенки перепончатого лабиринта образуются соединительно-тканным слоем, основной мембраной и эпителиальным слоем.

Перепончатое преддверие состоит из двух углублений: эллиптического, которое называется маточкой, и сферического - мешочка. Мешочек переходит в эндолимфатический проток, который заканчивается эндолимфатическим мешком.

Оба углубления вместе с перепончатыми полукружными протоками, с которыми соединяется маточка, образуют вестибулярный аппарат и являются органом равновесия. В них располагаются периферические аппараты нерва преддверия.

Перепончатые полукружные протоки имеют общую перепончатую ножку и соединяются с костными полукружными каналами, в которых залегают, посредством соединительно-тканных тяжей. Мешочек сообщается с полостью улиткового канала.

Перепончатая улитка, которая также называется улитковым протоком, включает в себя периферические аппараты улиткового нерва. На базилярной пластинке улиткового протока, которая является продолжением костной спиральной пластинки, находится выступ нейроэпителия, носящий название спирального или кортиева органа.

Он состоит из опорных и эпителиальных клеток, располагающихся на основной мембране. К ним подходят нервные волоконца - отростки нервных клеток основного ганглия. Именно кортиев орган отвечает за восприятие звуковых раздражений, так как нервные отростки представляют собой рецепторы улитковой части преддверно-улиткового нерва. Над спиральным органом располагается покровная мембрана.


3. Чувствительность слухового анализатора

Ухо человека может воспринимать диапазон звуковых частот в довольно широких пределах: от 16 до 20 000 Гц. Звуки частот ниже 16 Гц называют инфразвуками, а выше 20 000 Гц – ультразвуками. Каждая частота воспринимается определенными участками слуховых рецепторов, которые реагируют на определенное звучание. Наибольшая чувствительность слухового анализатора наблюдается в области средних частот (от 1000 до 4000 Гц). В речи используются звуки в пределах 150 – 2500 Гц. Слуховые косточки образуют систему рычагов, с помощью которых улучшается передача звуковых колебаний из воздушной среды слухового прохода к перилимфе внутреннего уха. Разница в величине площади основания стремени (малая) и площади барабанной перепонки (большая), а также в специальном способе сочленения косточек, действующих наподобие рычагов; давление на мембране овального окна увеличивается в 20 раз и более, чем на барабанной перепонке, что способствует усилению звука. Кроме того, система слуховых косточек способна изменять силу высоких звуковых давлений. Как только давление звуковой волны приближается к 110 – 120 дБ, существенно меняется характер движения косточек, снижается давление стремени на круглое окно внутреннего уха, предохраняет слуховой рецепторный аппарат от длительных звуковых перегрузок. Это изменение давления достигается сокращением мышц среднего уха (мышцы молоточка и стремени) и уменьшается амплитуды колебания стремени. Слуховой анализатор способен к адаптации. Длительное действие звуков приводит к снижению чувствительности слухового анализатора (адаптация к звуку), а отсутствие звуков – к ее повышению (адаптация к тишине). С помощью слухового анализатора можно относительно точно определить расстояние до источника звука. Наиболее точная оценка удаленности источника звука происходит на расстоянии около 3 м. направление звука определяется благодаря бинауральному слуху, ухо, которое ближе к источнику звука, воспринимает его раньше и, следовательно, более интенсивно по звучанию. При этом определяется и время задержки на пути к другому уху. Известно, что пороги слухового анализатора не строго постоянны и колеблются в значительных пределах у человека в зависимости от функционального состояния организма и действия факторов окружающей среды.

Различают два вида передачи звуковых колебаний – воздушную и костную проводимость звука. При воздушной проводимости звука звуковые волны улавливаются ушной раковиной и передаются по наружному слуховому проходу на барабанную перепонку, а затем через систему слуховых косточек перилимфе и эндолимфе. Человек при воздушной проводимости способен воспринимать звуки от 16 до 20 000 Гц. Костная проводимость звука осуществляется через кости черепа, которые также обладают звукопроводимостью. Воздушная проводимость звука выражена лучше, чем костная.

4. Гигиена органа слуха ребенка

Один из навыков личной гигиены - следить за опрятностью своего лица, в частности ушей - также должен прививаться ребенку по возможности раньше. Мыть уши, следить за чистотой их, удалять выделения, если таковые имеются.

У ребенка с гноетечением из уха, даже, казалось бы, самым незначительным, нередко развивается воспаление наружного слухового прохода. Об экземе, причинами которой нередко являются гнойный средний отит, а также механические, термические и химические повреждения, вызванные в процессе очищения слухового прохода. Самое главное при этом - соблюдение гигиены уха: нужно очищать его от гноя, осушать в случае закапывания капель при среднем гнойном отите, смазывать слуховой проход вазелиновым маслом, трещины - настойкой йода. Обычно врачи назначают сухое тепло, синий свет. Профилактика заболевания в основном заключается в гигиеническом содержании уха при гнойном среднем отите.

Чистить уши нужно 1 раз в неделю. Предварительно закапать в каждое ухо на 5 минут перекись водорода 3% раствор. Серные массы размягчаются и превращаются в пену, их легко удалить. При «сухой» чистке велика опасность протолкнуть часть серных масс в глубь наружного слухового прохода, к барабанной перепонке (так формируется серная пробка).

Прокалывать мочку уха нужно только в косметических кабинетах, чтобы не вызвать инфицирования ушной раковины и ее воспаления.

Систематическое пребывание в шумной обстановке или кратковременное, но весьма интенсивное воздействие звука может привести к тугоухости. Оберегайте уши от слишком громких звуков. Ученые выяснили, что продолжительное воздействие громкого шума вредит слуху. Сильные, резкие звуки ведут к разрыву барабанной перепонки, а постоянные громкие шумы вызывают потерю эластичности барабанной перепонки.

В заключение необходимо подчеркнуть, что гигиеническое воспитание малыша в детском саду и дома, конечно же, тесно связано с другими видами воспитания - умственным, трудовым, эстетическим, нравственным, т. е. с воспитанием личности.

Важно соблюдать принципы систематичности, постепенности и последовательности формирования культурно-гигиенических навыков с учетом возраста и индивидуальных особенностей малыша.

5. Выявить отклонение от нормы в работе слухового анализатора детей вашей группы

Методика педагогического обследования слуха детей дошкольного возраста зависит от того, владеет ли ребенок речью или нет.

Для обследования слуха говорящих детей подбирается доступный им тестовый материал. Он должен состоять из хорошо знакомых ребенку слов, отвечающих определенным акустическим параметрам. Так, для русскоязычных детей целесообразно использовать слова, отобранные Л.В.Нейманом (1954) для обследования слуха детей шепотом и включающие равное количество высокочастотных и низкочастотных слов. Все слова (всего 30) хорошо знакомы детям дошкольного возраста.

Для детей дошкольного возраста из этих 30 слов нами были отобраны по 10 слов низкочастотных (Вова, дом, море, окно, дым, волк, ухо, мыло, рыба, город) и 10 высокочастотных (зайчик, часы, Саша, чай, шишка, щи, чашка, птичка, чайка, спичка), хорошо знакомых всем детям старше 3-х лет.

Уже упоминалось, что из этих слов составлены два списка, в каждом - 5 низкочастотных и 5 высокочастотных слова:

зайчик, дом, Вова, шишка, рыба, часы, птичка, ухо, чай, волк;

мыло, дым, чашка, окно, щи, Саша, город, чайка, море, спичка.

При обследовании слуха детей слова каждого списка предъявляются в случайной последовательности.

Обследование слуха говорящих дошкольников

Ситуация А

Для подготовки ребенка к обследованию используется вспомогательный список слов, состоящий из 10 хорошо знакомых детям названий игрушек, например: кукла, мяч, шар, коляска, мишка, собака, машина, кошка, пирамидка, кубики. Эти слова не должны входить в основной список слов. К словам основного и вспомогательного списков подбираются соответствующие картинки.

Проверяющий старается расположить к себе ребенка, успокаивает его, если он волнуется. Обследование начинается только после того, как установлен контакт с ребенком. Взрослый отходит от него на 6 м и говорит: «Послушай, какие у меня (у куклы, у мишки) картинки. Я буду говорить тихо, шепотом, а ты повтори громко». Закрыв лицо листом писчей бумаги, он произносит шепотом одно из слов вспомогательного списка, например, «мяч» и просит ребенка, сидящего или стоящего к нему лицом, повторить слово. Если он справляется с заданием (т.е. повторяет названное слово громко или тихо), взрослый (или игрушка) показывает ему соответствующую картинку, подтверждая тем самым правильный ответ ребенка, хвалит его и предлагает послушать второе слово вспомогательного списка. Если ребенок повторяет и его, то это значит, что он понял задание и готов к обследованию.

Процедура обследования

Рита стоит боком к воспитателю. В противоположное ухо вставляют ватный тампон, поверхность которого слегка смочена каким-либо маслом, например, вазелиновым. Рите в случайной последовательности предъявляются слова одного из двух соответственных списков. Слова произносятся шепотом с расстояния 6 м. Если она не повторяет слово после двукратного предъявления, следует приблизиться к ней на 3 м и еще раз повторить слово шепотом. Если и в этом случае Рита не услышала слово, оно произносится шепотом возле ребенка. Если и в этом случае слово не воспринято, то оно повторяется голосом разговорной громкости около нее, а затем шепотом с расстояния 6 м. Аналогично воспитатель предлагает Рите последующие слова списка, которые произносит шепотом на расстоянии 6 м от ребенка. При необходимости (если слово не воспринято), воспитатель приближается к Рите. В конце обследования вновь с расстояния 6 м повторяются шепотом названия картинок, в восприятии которых ребенок затруднялся. Каждый раз при правильном повторении контрольного слова воспитатель подтверждает ее ответ соответствующей картинкой.

Ситуация Б

Воспитатель предъявляет слово шепотом с 6 м. Если Дима не дает правильного ответа, это же слово повторяется голосом разговорной громкости. При правильном ответе следующее слово вновь произносится шепотом. Слово, вызвавшее затруднение, предъявляется еще раз после прослушивания ребенком двух-трех следующих слов списка или в конце проверки. Этот вариант позволяет сократить время обследования.

Затем Диме предлагают встать другим боком к воспитателю, и аналогично обследуют второе ухо, используя второй список слов.

Таким образом, совместно с воспитателем, было проведено обследование детей всей группы на работу слухового анализатора. Из 26 детей выявить отклонение от нормы удалось у одного ребенка. Остальные 25 детей выполнили все задания с первого раза хорошо.

Заметка для родителей.

Уважаемые родители сохраняйте слух вашего ребенка!

Каждый день миллионы людей подвергаются шумовому воздействию, которое эксперты определяют как «раздражающее слух и вредное для здоровья». И действительно, независимо от того, живете ли вы в большом городе или небольшом поселке, вы можете попасть в 87% людей, которые со временем рискуют потерять часть слуха.

Дети особенно уязвимы к ухудшению слуха, связанному с вредным шумовым воздействием, причем, как правило, это происходит безболезненно и постепенно. Чрезмерный шум наносит вред микроскопическим сенсорным рецепторам, находящимся во внутреннем ухе ребенка. Во внутреннем ухе находится от 15 до 20 тысяч таких рецепторов, и поврежденные рецепторы больше не могут передавать звуковую информацию в мозг. Ситуацию ухудшает и тот факт, что повреждение слуха при чрезмерном шумовом воздействии носит практически необратимый характер.

Важность ранней диагностики

Эксперты считают, что первые несколько лет жизни ребенка – являются наиболее важными для его развития. Недостаточно хороший слух может значительно замедлить умственное развитие ребенка. И если недостаточный слух диагностирован поздно, может быть упущено критическое время для стимуляции слуховых проходов, ведущих к слуховым центрам мозга. У ребенка может произойти задержка развития речи, что приведет к замедлению навыков общения и обучения.

К несчастью, большинство проблем со слухом обнаруживаются довольно поздно. От начала ухудшения слуха и до того времени, как вы можете заметить очевидные признаки нарушения слуха у вашего ребенка, может пройти довольно значительное время. Существует несколько признаков, в зависимости от возраста ребенка, по которым вы можете понять, все ли у него в порядке со слухом:

Новорожденный: должен вздрагивать при хлопке руками в 1-2 метрах от него и успокаиваться при звуке вашего голоса.

От 6 до 12 месяцев: должен поворачивать голову, слыша знакомые звуки, и подавать голос в ответ на обращенную к нему человеческую речь.

1,5 года: Должен говорить простые односложные слова и показывать на части тела, когда его просят.

2 года: должен выполнять простые команды, поданные голосом без помощи жестов, и повторять за взрослым простые слова.

3 года: должен поворачивать голову непосредственно к источнику звука.

4 года: должен выполнять поочередно две простые команды (например «Помой руки и ешь суп»).

5 лет: должен уметь поддерживать простой разговор и иметь более или менее членораздельную речь.

Школьник: Ухудшение слуха у школьников часто проявляется в виде невнимательности во время уроков, недостаточной концентрации, плохой учебы, частых простуд и ушной боли.

Если вы заметили, что ваш ребенок отстает в слуховом и/или речевом развитии, или имеет проблемы со слухом, незамедлительно проконсультируйтесь у врача.

Дети, живущие в городах, особенно подвержены губительному влиянию шума. Наиболее часто поражается слух детей, чьи дома или школы находятся вблизи загруженных трасс или железных дорог. Но не менее важна и домашняя обстановка. Постарайтесь, чтобы ваш ребенок не подвергался таким привычным для нас источникам громкого шума, как телевизор, домашний кинотеатр или стереосистема на повышенной громкости. При срочной необходимости, например работе с дрелью, лучше надеть ребенку наушники без звука.

В домашней обстановке защитить слух ребенка от внешнего шумового воздействия помогут самые простые приемы:

Напольные ковровые покрытия от стены до стены.

Панели на потолке и стенах.

Хорошо подогнанные и плотно прилегающие окна и двери.

Потенциально вредные шумы

Согласно медицинским данным, к ухудшению слуха может привести длительное шумовое воздействие более 85 децибел. Ниже приводятся некоторые уровни различных звуков, которые ребенок может услышать в окружающей его обстановке:

Трасса с большим движением: 85 децибел

Шум от ресторана или кафе: 85 децибел

Музыкальный плеер на средней громкости: 110 децибел

Снегоход: 110 децибел

Сирена скорой помощи: 120 децибел

Рок-концерт: 120 децибел

Громкие музыкальные игрушки: 125 децибел

Фейерверки и петарды: 135 децибел

Дрель: 140 децибел

орган слух анализатор звук


СПИСОК ЛИТЕРАТУРЫ

1. Агаджанян Н.А., Власова И.Г., Ермакова Н.В., Торшин В.И. Основы физиологии человека: Учебник. Изд. 2-е, испр. – М.: Изд-во РУДН, 2005. – 408 с.: ил.

2. Анатомия и физиология детей и подростков: Учеб. пособие для студ. пед. вузов /М.Р.Сапин, З.Г.Брыксина. – 4-е изд., перераб. и доп. – М.: Издательский центр «Академия», 2005. – 432 с.

3. Батуев А.С. Физиология высшей нервной деятельности и сенсорных систем: Учебник для вузов. – 3-е изд. – СПб.: Питер, 2006. – 317 с.: ISBN 5-94723-367-3

4. Гальперин С.И. Физиология человека и животных. Учеб. пособие для ун-тов и пед. ин-тов. М., «Высш. школа», 1977. - 653 с. с ил. и табл.

5. Н.А.Фомин Физиология человека: Учеб. пособие для студентов фак. физ. культуры пед. ин-тов, - 2-н изд., перераб. – М.: Просвещение, 1991. – 352 с. – ISBN 5-09-004107-5

6. И.Н.Федюкович Анатомия и физиология: Учебное пособие. – Ростов – н/Д.: изд-во «Феникс», 2000. – 416 с.

7. Н.И. Федюкович Анатомия и физиология: Учеб. пособие. – Мн.: ООО «Полифакт - Альфа», 1998. – 400 с.: ил.

8. Некуленко Т.Г. Возрастная физиология и психофизиология /Т.Г.Никуленко. – Ростов н/Д: Феникс, 2007. – 410, с. – (Высшее образование).

9. Сапин М.Р., Сивоглазов В.И. Анатомия и физиология человека (с возрастными особенностями детского организма): учеб. пособие для студ. сред. пед. учеб. заведений. – 2-е изд., стереотип. – М.: Издательский центр «Академия», 1999. – 448 с., ил. ISBN 5-7695-0259-2


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции