30.10.2019

Развитие регуляторных систем в онтогенезе человека. Факторы регуляции развития человека и животных на разных этапах онтогенеза. Системы регуляции онтогенеза


ГОУ ВПО «Сургутский государственный университет ХМАО-Югры»

Методическая разработка

лабораторного занятия № 11 для студентов I-курса.

Тема занятия: «Регуляция онтогенеза».

Выполнил (а) студент (ка) I курса

Медицинского института

31- _____ группы

Ф.И.О._________________________

_________________________

Сургут, 2010 г.

Цель занятия : Изучить основные механизмы регуляции онтогенеза, критические периоды онтогенеза человека; влияние вредных факторов на плод и механизмы образования пороков развития.

Вопросы для самоподготовки студентов:


  1. Регуляционный и мозаичный тип развития, их отличия.

  2. В чем сущность дифференцировки клеток?

  3. Как происходит регуляция ранних стадий эмбрионального развития; когда начинает функционировать геном зародыша?

  4. В чем заключается действие генов в раннем развитии?

  5. Как изменяется генетическая потенция ядер клеток в процессе развития?

  6. Как осуществляется генетическая регуляция дифференци­ровки?

  7. Чем отличается взаимодействие клеток в период дробления, гаструляции, органогенеза?

  1. Какое значение имеет контакт бластомеров, к чему приво­дит их разъединение?

  2. Возможно ли развитие зародыша млекопитающих из смеси клеток двух-трех зародышей?

  1. Каковы основные формы взаимодействия клеток в периоды органогенеза?

  2. В чем сущность эмбриональной индукции, ее виды?

  3. Каковы химическая структура индукторов и механизм их действия?

  4. Какое значение имеет нервная система в регуляции онтоге­неза?

  5. В чем сущность гуморальной регуляции онтогенеза, виды регуляторов.

  6. Каковы механизмы гормональной регуляции в онтогенезе?

  7. Какое значение в эмбриогенезе имеют морфогенетические поля?

  8. Каковы возможные пути действия факторов среды, вызы­вающие нарушение эмбриогенеза?

  9. Почему эмбриопатии характеризуются более глубокими нарушениями, чем фетопатии?

  10. Как осуществляется взаимосвязь материнского организма и плода, каковы последствия ее нарушения?

  11. В чем разница между наследственными и ненаследственны­ми врожденными заболеваниями?

  12. Что такое фенокопии?

  13. Нарушения каких процессов в онтогенезе приводят к поро­кам развития?

  14. Что такое критические периоды эмбриогенеза?

  15. Что такое тератогены; их классификация, механизм действия?

Задание для студентов.

Работа 1. Регуляция развития плацентарных млекопитающих.

Перепишите табл. 1.

Таблица 1


Периоды онтогенеза

Виды регуляции

генетическая

контактное взаимодействие клеток

эмбриональ­ная индукция

морфо генети­ческие поля

нервная

гормональная (гормоны зародыша)

факторы среды

Прогенез

Эмбриогенез:

Зародыш на ста­дии дробления

Бластула

Гаструла

Зародыш на ста­дии органогенеза Зародыш в плод­ный период

^ Постэмбриональный период


+

Геном матери

^ Работа 2. Генетическая регуляция развития организма.

Гены регулируют и контролируют развитие организма на всех этапах онтогенеза (рис. 1).


Рис. 1. Генетический контроль развития млекопитающих [Коню­хов Б. В., 1976].

В овогенезе в цитоплазме яйцеклетки синтезируются и от­кладываются материнские РНК, которые несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позво­ночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начина­ют регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у позвоночных развитие организма регулируется только продуктами деятельности соб­ственных генов зародыша.

Регуляция экспрессии генов в процессе развития организ­мов осуществляется на всех этапах синтеза белка, как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.

Разберите некоторые модели генетической регуляции на уровне транскрипции (рис. 2). Зарисуйте модель 1.


Рис. 2. Генетическая регуляция на уровне транскрипции.

А - модель 1: каскадная эмбриональная индукция; б - модель 2: репрессия ко­нечным продуктом; в - модель 3: регуляция экспрессии генов несколькими генами-регуляторами; г - модель 4: регуляция нескольких групп структурных генов одним геном.

Обозначьте:

С – сенсорный ген;

И – ген-интегратор;

П – промотор;

СГ – структурные гены;

O – индуктор;

Δ – репрессор.

Модель 1. Каскадная эмбриональная индукция (рис. 2, а).

Индуктор 1 взаимодействует с сенсорным геном (С), акти­вируя ген-интегратор (И), продукт деятельности которого дей­ствует через промотор (П) на структурные гены (СГ 1 , СГ 2 и СГ 3). В свою очередь продукт деятельности СГ 3 является ин­дуктором 2 для структурных генов СГ 4 , СГ 5 и т.д.

Модель 2. Репрессия конечным продуктом (рис. 2, б).

Продукты активности структурных генов в свою очередь ре­прессируют деятельность гена, контролирующего синтез ин­дуктора 1.

Модель 3. Регуляция экспрессии генов несколькими гена­ми-регуляторами (рис. 2, в).

Структурные гены активируются или репрессируются про­дуктами действия нескольких генов.

Модель 4. Регуляция нескольких групп структурных генов одним геном (рис. 2, г).

Индукция или репрессия нескольких структурных генов продуктом деятельности одного гена. Этой моделью можно объяснить плейотропное действие генов, влияние половых гормонов и т.д.

^ Работа 3. Политенные хромосомы.

В создании тканеспецифических продуктов участвует лишь небольшая часть генома. Места активного синтеза мРНК - пу­фы - хорошо видны в политенных (гигантских) хромосомах и представляют собой расплетенные участки хромосом, образую­щие менее компактную структуру.

А. Изучите микропрепарат под микроскопом при большом увеличении и зарисуйте. Обозначьте: 1 - эухроматин, 2 - гетерохроматин, 3 - пуф.

Б. Изучите по рис. 3 участок политенной хромосомы, пре­терпевающий пуфинг (по Grossbach, 1973, из Гилберт С., 1994). Зарисуйте рис. 3, г.


Рис. 3. Процесс пуфинга.

А-г - стадии образования пуфа;


Рис. 3. Процесс пуфинга (Продолжение)

Д - пуфинг в политенных хромосомах в динамике.

Работа 4. Регуляционная способность ядер. Клонирование.

В онтогенезе при дифференцировке клеток происходит избирательная экспрессия разных частей генома и ограничение генетических потенций у дифференцированных клеток. Одна­ко в ядрах соматических клеток сохраняются все гены, и в соот­ветствующих условиях они могут реактивироваться и обеспе­чить развитие нормального зародыша. Клонирование - это развитие нового организма, являющегося точной генетической копией родительской особи. У видов, размножающихся поло­вым путем, клонирование происходит при пересадке ядер из соматической клетки в энуклеированную яйцеклетку. Молодая особь при клонировании является точной копией организма-донора ядер соматических клеток. В настоящее время получе­ны путем клонирования животные разных классов, в том числе и млекопитающие. Оказалось, что в процессе, развития генетические потенции ядер соматических клеток снижаются, и чем старше донор соматических ядер, тем ниже процент развития клонированных особей. Кроме того, установили, что генетиче­ские потенции разных клеток донора неодинаковы.

Изучите рисунки по пересадке ядер, взятых из соматических клеток на разных стадиях развития лягушки (по Гёрдон, 1965, из Дьюкар Э., 1978) (рис. 4).


^ Рис. 4. Пересадка ядер из соматических клеток в яйцеклетки лягушки на разных стадиях развития клеток донора.

Работа 5. Взаимодействие бластомеров в период дробления , (лечебный факультет).

а. Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определен­ном месте зародыша в определенное время. У плацентарных животных до завершения восьмиклеточной стадии разные бластомеры не отличаются друг от друга по морфологии, биохимии и потенциям. Однако компактизация (сближение и увели­чение контакта бластомеров с образованием компактного клеточного шара) приводит к образованию наружных и внутрен­них клеток, которые резко различаются по своим свойствам. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша оп­ределяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Изучите рис. 5, а пересадки бластомеров у зародышей мыши [Минц Б., 1970; Hillman et al., 1972].


Рис. 5. Взаимодействие бластомеров в период дробления.

А - пересадка бластомеров зародышам мыши; б - соединение бластомеров у зародышей мыши: 1 -зародыш, 2 - трофобласт; в - механизмы формирова­ния однояйцевых близнецов и двойниковых уродств у человека: 1 - внутрен­ние клетки бластоцисты; 2 - полость бластоцисты; 3 - зародыш; 4 - полость амниона; 5 - полость хориона; 6 - не полностью разъединенные близнецы.

б. Влияние контакта бластомеров на развитие зародыша. Образование однояйцевых близнецов и двойниковых уродств у человека.

При сохранении полного контакта бластомеров развивается один организм. Также один организм развивается при объеди­нении бластомеров нескольких зародышей. После специально­го воздействия бластомеры нескольких четырехклеточных за­родышей могут соединиться с образованием общей морулы. Например, если соединить бластомеры зародышей трех разных линий с контрастной окраской (белой, черной и рыжей), фор­мируется морула, из которой развиваются мыши с разноокрашенными участками кожи. Это связано с перемешиванием бла­стомеров зародышей разных линий мышей, часть из которых пошла на образование зародыша и свидетельствует о том, что наследственный материал бластомеров не смешивается.

Изучите рис. 5,б - соединение бластомеров у зародышей [Гилберт С, 1993].

Потеря контакта между бластомерами изменяет их судьбу. Разъединение клеток зародыша на ранних этапах развития при­водит к образованию идентичных близнецов, так как ранние бластомеры тотипотентны. Неполное разъединение клеток за­родыша приводит к возникновению двойниковых уродств, ко­торые могут быть у разных видов беспозвоночных, позвоноч­ных животных и у человека.

Рассмотрите слайды, таблицы, рисунки с примерами двой­никовых уродств у разных видов животных и человека.

Изучите рис. 5, в, на котором показан механизм образова­ния однояйцевых близнецов и двойниковых уродств у человека [из: Гилберт С., 1993, переработано].

Рис. 5. Продолжение.

Примерно в 33 % случаев разъединение бластомеров идет до образования трофобласта. Близнецы имеют собственные хорион и амнион.

Разъединение бластомеров после образования трофобласта, но до образования амниона происходит примерно в 66 % случаев. Близнецы имеют собственные амниотические оболочки, но находятся в общем хорионе.

Разъединение бластомеров после образования ам­ниона происходит редко, в нескольких процентах случаев. Близнецы имеют общие амнион и хорион.

Неполное разъединение клеток зародыша. Близне­цы имеют общие отделы тела (двойниковое уродст­во).

Работа 6. Клеточные процессы в периоды гаструляции и ор­ганогенеза.

Изучите табл. 2, рис. 6 и 7, слайды и препараты по эм­бриогенезу животных. Перепишите таблицу.


Рис. 6. Последовательные этапы формирования лица (вид спереди). а - 4-недельный зародыш (3,5 мм.); б - 5-недельный зародыш (6,5 мм); в - 5,5-недельный зародыш (9 мм); г - 6-недельный зародыш (12 мм); д - 7-недельный зародыш (19 мм); е - 8-недельный зародыш (28 мм). 1 - лобный выступ; 2 - обонятельная плакода; 3 - носовая ямка; 4 - ротовая пластинка; 5 - ротовое отверстие; 6 - верхнечелюстной отросток; 7 - нижнечелюстная дуга; 8 - гиоидная дуга; 9 - медиальный носовой отросток; 10 - латеральный носовой отросток; 11 - носослезная бороздка; 12 - гиомандибулярная щель; 13 - область филтрума, сформированная слившимися медиальными носовыми отростками; 14 - наружное ухо; 15 - слуховые бугорки вокруг гиомандибулярной щели; 16 - подъязычная кость; 17 - хрящи гортани.

Таблица 2


Формы клеточных взаимодействий

Образование нормальных структур (примеры)

Последствия нарушений межклеточных взаимодействий (примеры)

^ Клеточные перемещения

Избирательное размножение клеток

Избирательная клеточная гибель

Клеточная адгезия

Клеточные сгущения


Перемещение клеток при гаструляции, при образовании нервной трубки, при перемещении первичных половых клеток.

Закладка зачатков отдельных органов.

Разделение пальцев, гибель эпителиальных клеток при слиянии небных зачатков, носовых отростков.

Гибель нейроэпителиальных клеток при образовании нервной трубки.

Образование нервной трубки из нервной пластинки, слияние зачатков структур лица (небных отростков, носовых отростков между собой и с верхнечелюстными отростками).

Образование зачатков конечностей.


Нарушение образования гаструлы, нервной трубки; нарушение структуры, изменение количества или отсутствия гонад.

Отсутствие органа или его доли.

Синдактилия, расщелина твердого неба, расщелины твердой губы, лица, спинномозговые грыжи.

Спинномозговая грыжа, расщелины твердого неба, верхней губы, лица.

Отсутствие конечностей, дополнительные конечности.

Рис. 7. Развитие неба у зародыша свиньи [Карлсон Б., 1983].

А-г - этапы развития вторичного неба (препарат крыши ротовой полости, х 5); д, е (поперечные срезы, иллюстрирующие до и после опускания языка, 1 - верхняя губа; 2 - срединный небный отросток; 3 - латеральный небный отросток; 4 - носовая перегородка; 5 - язык; 6 - шов неба.

Работа 7. Эмбриональная индукция.

Разберите рис. 8, а, б, зарисуйте и обозначьте основные структуры.

Рис. 8. Эмбриональная индукция почки и зуба у млекопитающих, а - развитие почек: 1 - предпочка. 2 - мезонефральный канал, 3 - мезенхима первичной почки, 4 - первичная почка, 5 - вырост мочеточника вторичной почки, 6 - мезенхима вторичной почки, 7 - зачаток вторичной почки, → ин­дукция; б - ранние стадии развития зуба: I - десна нижней челюсти (вид свер­ху): II - поперечный срез десны; III-VI - стадии развития зуба: 1 - гребень десны, 2 - зубная пластинка, 3 - мезодермальные зубные сосочки, 4 - зача­ток эмалевого органа, 5 - амелобласты, 6 - зачаток эмали, 7 – одонтобласты, 8 - зачаток дентина, 9 - зачаток пульпы, 10 - эмаль, 11 - дентин; → индук­ция; ↔ − взаимная индукция.

^ Лечебный факультет :

А. Эмбриональная индукция, обусловливающая развитие почек у млекопитающих (рис. 8, а).

Мезонефральный (вольфов) канал индуцирует образование первичной почки. Вырост мочеточника из мезонефрального канала индуцирует образование вторичной почки, которая в свою очередь поддерживает рост мочеточника. Метанефрогенная мезенхима индуцирует ветвление мочеточника. Эпителий разветвлений мочеточника индуцирует мезенхиму к образованию почечных канальцев.

^ Стоматологический факультет

Б. Эмбриональная индукция, обусловливающая развитие зуба у млекопитающих (рис. 8, б) [Дьюкар Э., 1978].

Первый зачаток зубов - зубная пластинка, утолщенная по­лоска эктодермы по гребню десны, развивается независимо от мезодермы. Под зубной пластинкой появляется ряд мезодермальных зубных сосочков, которые индуцируют образование из эктодермы зачатков эмалевого органа (при удалении мезодермальных сосочков зачатки эмалевого органа не образуются). Взаимная индукция между эмалевым органом и мезодермальным зубным сосочком приводит к формированию клеток, об­разующих эмаль, дентин и пульпу. На следующей стадии дифференцировки возникающие эмаль и дентин оказывают взаимное влияние на развитие друг друга.

Работа 8. Взаимосвязь нервной системы и иннервируемого ею органа в онтогенезе.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, при­чем эти структуры взаимно стимулируют развитие друг друга. Отсутствие периферических нервов или их повреждение (на­пример, лекарственными препаратами, токсинами токсоплазмы и др.) вызывают нарушение формирования иннервируемых ими структур. Так, например, в Европе родились несколько со­тен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые трав­мы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII черепных нервов). Способствуют восстановлению поврежденных струк­тур головного и спинного мозга пассивные движения (для это­го созданы специальные аппараты), массаж и физиотерапевти­ческая стимуляция иннервируемых органов.

При нейрофиброматозе (аутосомно-доминантный тип на­следования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той сто­роне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие струк­тур, формирующих лицо).

Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы дея­тельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.

Разберите схемы экспериментов по изучению взаимосвязи нервных центров и иннервируемых органов.

Удаление нерва на левой стороне зародыша аксолотля при­вело к отсутствию конечности на оперированной стороне тела. Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, тали­домид и др.) (рис. 9, а).

Удаление зачатка конечности у зародыша аксолотля приво­дит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне (рис. 9, б).


Рис. 9. Взаимосвязь нервных центров и иннервируемых органов [Дьюкар Э., 1978, с изменениями].

А - влияние спинномозговых нервов на развитие конечности: 1 - спинной мозг, 2 - спинномозговой нерв, иннервирующий конечность, 3 - спинномоз­говой ганглий, 4 - конечность; б- влияние зачатка конечности на развитие сегментов спинного мозга (поперечный сред зародыша аксолотля с удаленным зачатком конечности: 1 - спинномозговой ганглий, 2 - спинномозговой нерв, 3 - дорсальные рога серого вещества спинного мозга, 4 - вентральные рога се­рого вещества спинного мозга.

Работа 9. Гормональная регуляция онтогенеза у плацентар­ных млекопитающих.

Изучите по табл. 3 влияния гормонов на процессы разви­тия организма.

Таблица 3


Источник образования

Гормона


Гормоны

Основные эффекты

Гипоталамус

Гипофиз

^ Эпифиз (шишковид­ное тело)

Щитовид­ная железа

Поджелудоч­ная железа

Надпочеч­ники

Яичники:

фолликулы

желтое тело

Плацента

Семенники

Тимус

Либерины

Гонадолиберин

Соматропный гормон

Тиреотропный гормон(ы)

Адренокортикотропный гормон (АКТГ)

Гонадотропины:

А) фолликулостимулирующий гормон (ФСГ)

Б) лютеинизирующий гормон

В) пролактин (лютеотропный гормон - ЛТГ)

Мелатонин (син­тезируется но­чью)

Серотонин (син­тезируется днем)

Тироксин

Инсулин

Кортизол

Эстрогены

Прогестерон

Прогестерон

Хорионический соматомаммотропин (плацен­тарный гормон роста)

Тестостерон

Фактор, ингибирующий парамезонефральные протоки

Дигидротестостерон

Тимозин


В раннем эмбриогенезе гормоны ги­поталамуса влияют на дифференцировку и миграцию нейронов.

В позднем эмбриогенезе и постна­тальном периоде - регулируют разви­тие опосредованно путем изменения синтеза гормонов гипофиза.

Усиливают синтез гормонов аденогипофиза.

Тормозят синтез гормонов аденогипофиза.

Определяет момент наступления по­ловой зрелости и характер полового поведения.

Усиливает пролиферацию клеток и синтез белка. В постнатальном перио­де регулирует рост.

Ускоряет рост и дифференцировку клеток щитовидной железы.

Стимулирует рост надпочечников и продукцию стероидов.

Усиливают пролиферацию стволовых клеток, рост фолликулов в яичниках, стимулируют рост семенных канальцев и семенников, образование поло­вых гормонов в гонадах. Инициируют гаметогенез.

Поддерживает желтое тело беремен­ности в активном состоянии. Стиму­лирует рост молочной железы и секрецию молока.

Регулирует суточные биологические ритмы, половое созревание и репро­дуктивные функции.

Чувствительные к серотонину нейро­ны регулируют поведение, сон, про­цессы терморегуляции.

Регуляция двигательной активности пищеварительного тракта.

Повышает интенсивность обмена ве­ществ и синтеза белка; регулирует развитие головного мозга, рост и про­порции тела.

Необходим для нормального развития производных кожи. Инициирует дифференцировку молочной железы. Усиливает пролиферацию.

Необходим для нормального развития многих органов на поздних стадиях он­тогенеза. Стимулирует поздние стадии дифференцировки молочных желез.

Стимулируют развитие женских вто­ричных половых признаков; способст­вуют пролиферации и секреции в эпи­телиальных клетках матки; начальных изменений в молочных железах.

Сохранение беременности; дальнейшая дифференцировка молочных желез.

Дальнейшая пролиферация эпителия матки и сохранение беременности; дальнейшая дифференцировка мо­лочных желез.

Действие, сходное с действием гормо­на роста и пролактина гипофиза.

Определяет развитие мужских поло­вых путей, семенников, вторичных половых признаков и гормональной функции гипоталамуса (в эмбриогенезе), ингибирует развитие молочных желез, регулирует рост тела.

Регрессия парамезонефральных мюллеровых протоков.

Развитие предстательной железы, пениса, мошонки.

Пролифирация Т-лимфоцитов.

Работа 10. Воздействие вредных факторов среды на зародыш.

Изучите таблицу 4, разберите и зарисуйте схему 1, приведите примеры прямого и опосредованного повреждения зародыша.

Таблица 4


Факторы

Основные механизмы нарушений

Эмбрио- и фетопатии

I. Неполноценное питание матери

1. Голодание и недоедание

2. Дефицит белка

3. Дефицит вита­минов (часто без гиповитаминоза у матери):

Витамина А

витамина В2

витамина С

витамина Е

фолиевая кислота

4. Избыток витаминов:

Витамина А

витамина С

^ II. Заболевания матери


  1. Ревматические пороки сердца

  1. Ненаследственные врожден-ные пороки сердца

  1. Гипертониче­ская болезнь

4. Анемия

5. Сахарный диабет

6. Тиреотоксикоз

7.Патология надпочечников

8. Иммунологи­ческий конфликт (по резус-факто­ру и системе АВ0; наиболее часто несовмес­тимы: 0 - А, 0 - В, А - В, В - А, комбинации групп крови ма­тери и плода)

III. Внутриутроб­ные инфекции

1.Вирус краснухи

2. Вирус гриппа

3. Вирус полиомиелита

4. Вирусный ге­патит (болезнь Боткина)

Токсоплазмоз

^ IV. Ионизирующая радиация

V. Влияние хи­мических соеди­нений, в том чис­ле лекарственных веществ (более 600 соединений)

Алкоголь


Нарушение трофики за­родыша.

Нарушение метаболизма у зародыша.

Нарушение окислитель­но-восстановительных процессов в эпителии.

Нарушение роста, обра­зование ферментов био­логического окисления.

Нарушение процессов окисления, образования соединительной ткани, биосинтеза.

Нарушение окисления жиров, приводящее к по­явлению токсичных про­дуктов.

Нарушение синтеза ряда аминокислот, метальных групп.

Нарушение роста, окислительно-восстановительных процессов.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плацен­ты.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плаценты.

Гипоксия, нарушение маточно-плацентарного кровообращения, морфофункциональные на­рушения плаценты.

Нарушается транспорт кислорода к плоду, де­фицит железа, морфоло­гические изменения пла­центы.

Гормональные сдвиги, гипергликемия и кетоацидоз, ухудшение маточно-плацентарного кровообращения, пато­логические изменения в плаценте.

Повышенное выделение гормонов щитовидной железы.

Недостаток или избыток гормонов надпочечников.

Проникают через пла­центу резус-антитела. Проникновение через плаценту неполных изоиммунных антител А и В, которые вызывают ге­молиз эритроцитов пло­да. Выделившийся не­прямой билирубин явля­ется сильным тканевым токсином.

Инфицирование зароды­ша, особенно в первые три месяца развития.

Инфицирование плода, интоксикация организма матери, гипертермия, нарушение маточно-плацентарного кровообра­щения.

Вирус переходит через плаценту, вызывая забо­левание.

Патологические изменения материнского организма, изменения в плаценте.

Поражение зародыша проникающими радиацией и токсичными продуктами поврежденных тканей.

Непосредственное дейст­вие на зародыш. Наруше­ние структуры и функ­ции плаценты. Патологи­ческие изменения в мате­ринском организме.

Прямое токсическое действие на плод, пла­центу и организм матери.

Повреждение гамет, ге­неративные мутации. Прямое токсическое действие.


Гипотрофия плода, различные аномалии развития, преимущественно центральной нервной системы, мертворождение, ослабленные, склонные к заболевани­ям дети.

Дефекты органов зрения и мочеполовой системы.

Деформация конечно­стей, расщепление твер­дого неба, гидронефроз, гидроцефалия, аномалии сердца и др.

Возможны гибель заро­дыша, выкидыш.

Аномалии мозга, глаз, скелета.

Пороки сердца и сосудов.

Расщепление твердого неба, анэнцефалия.

Увеличивается вероят­ность выкидыша.

Гипотрофия плода, функциональная незре­лость, аномалии органов и систем, преимущест­венно сердечно-сосуди­стой. У детей часто встречаются инфекционно-аллергические за­болевания и нарушения нервной системы.

Гипотрофия плода. По­роки развития, в основ­ном сердца и сосудов.

Гипотрофия плода, на­рушения сердечно-сосу­дистой системы. Повы­шенная заболеваемость у детей.

Гибель плода, наруше­ние центральной нерв­ной системы, анемия у детей.

Гибель плода, недоно­шенные, незрелые с повышенной массой плоды, функциональная не­зрелость поджелудочной железы, легких, реже из­менения щитовидной железы, почек. Встреча­ются анэнцефалия, гид­ронефроз и другие нарушения центральной нервной системы

Нарушение формирова­ния центральной нерв­ной системы, щитовид­ной железы и, меньше, других желез внутренней секреции. Реже аномалии сердечно-сосудистой системы, костно-мышечной, половой и др.

Функциональная неполно­ценность надпочечников.

Гемолитическая болезнь плода и новорожденного.

Аномалии сердца, мозга, органов слуха, зрения и др.

Аномалии половых орга­нов, катаракта, «заячья губа».

Врожденный полиомие­лит.

Уродства на разных стади­ях развития. Врожденный вирусный гепатит, ослож­ненный циррозом печени; задержка развития.

Уродства головного моз­га, глаз, конечностей, «волчья пасть», пороки сердца, заболевания эн­докринных органов.

Врожденная лучевая бо­лезнь. Наиболее часто паралич нервной системы. Могут быть анома­лии глаз, сосудов, легких, печени, мочеполовых ор­ганов, конечностей.

Различные пороки раз­вития, зависящие от ве­щества, дозы и срока по­ступления.

Гипотрофия, склонность детей к респираторным заболеваниям.

Умственная отсталость, психические заболева­ния, пороки сердца, эпи­лепсия, алкогольное по­ражение плода.

Схема 1. Воздействие вредных факторов среды на зародыш.


Работа 11. Критические периоды в онтогенезе человека.

Изучите и перепишите табл. 5.

Таблица 5


Периоды онтогенеза человека

Критические периоды

Возможные нарушения развития

Предымплантаци­онный и имплантационный

Период гисто- и органогенеза и начала плацентации

Перинатальный пе­риод (роды)

Период новорожденности

Подростковый (пу­бертатный)

Климактерический


Для всего зародыша

Для разных органов и систем не совпадают по времени

Для всего организма и отдельных органов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Для всего организ­ма и отдельных ор­ганов и систем


Гибель зародыша

Двойниковые уродства

Наследственные болезни

Пороки и аномалии развития различных органов и систем, гибель зародыша

Травмы, детский церебральный паралич, слабоумие, гибель

Высокая вероятность перегревания, переохлаждения, патологии различных организмов и систем, неспецифических инфекций и гибели

Повышен риск проявления ненаследственных заболеваний, нарушения обмена веществ, подростковых нарушений поведе­ния, психической ранимо­сти, агрессивности. Увели­чивается смертность

Возрастает риск развития соматических и психиче­ских болезней, увеличива­ется частота возникнове­ния опухолей. Повышается смертность

^ Работа 12. Классификация и механизмы образования пороков развития.

Изучите и перепишите информацию по классификации механизмов образования пороков развития.

^ I. По этиологическому признаку.

1. Наследственные: а) генеративные мутации (наследственные болезни); б) мутации в зиготе и бластомерах (наследственные болезни, мозаицизм).

2. Ненаследственные: а) нарушение реализации генетической информации (фенокопии); б) нарушение взаимодействия клеток и тканей; пороки развития органов и тканей (тератомы, кисты); в) соматические мутации (врожденные опухоли.)

3. Мультифакториальные.

II. По периоду онтогенеза.


  1. Гаметопатии: а) наследственные; б) ненаследственные (перезревание гамет).

  2. Бластопатии до 15-го дня; а) наследственные болезни (мозаицизм - зародыш состоит из клеток с нормальным и атипичным набором хромосом); б) не наследственные (двойниковые уродства, циклопия, сиреномелия).

  3. Эмбриопатии до конца 8-й недели: большинство поро­ков развития, пороки, обусловленные действием тератогенов.

  4. Фенопатии от 9 нед. до родов. Пороки этой группы встре­чаются редко: остатки эмбриональных структур (персистирование); сохранение первоначального расположения органов, например крипторхизм; недоразвитие отдель­ных органов или всего плода, отклонения в развитии органов.

  5. ^ Пороки, возникающие в постнатальный период (возника­ют реже, чем вышеуказанные пороки, обусловлены трав­мами или заболеваниями).

Контроль итогового уровня знаний:

Тестовые задания

1. Выберите один правильный ответ.

^ УЧЕНИЕ О ЗАРОДЫШЕВОМ РАЗВИТИИ ОРГАНИЗМОВ ПУТЕМ ПОСЛЕДОВАТЕЛЬНЫХ ОБРАЗОВАНИЙ НО­ВЫХ СТРУКТУР НАЗЫВАЕТСЯ:


  1. Преформизм.

  2. Эпигенез.

  3. Трансформизм.

  4. Витализм.

2. Выберите один правильный ответ.

^ ГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ОНТОГЕНЕЗА У ПОЗВО­НОЧНЫХ ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ:

1. Уменьшения количества генов в процессе развития.

2. Репрессии генов.

3. Дерепрессии генов.

4. Дерепрессии и репрессии генов.

3. Выберите один правильный ответ.

^ ПРИ КЛОНИРОВАНИИ РЕГУЛИРУЮТ РАЗВИТИЕ ЗА­РОДЫША ГЕНЫ:


  1. Сперматозоида.

  2. Яйцеклетки.

  3. Сперматозоида и яйцеклетки.

  4. Соматической клетки.

4. Выберите один правильный ответ.

^ ОДНОЯЙЦОВЫЕ БЛИЗНЕЦЫ ОБРАЗУЮТСЯ В РЕЗУЛЬТАТЕ;


  1. Разъединения клеток зародыша на стадии гаструлы.

  1. Разъединения клеток зародыша на стадии дифференцировки зародышевых листков.

  1. Полного расхождения бластомеров.

  2. Неполного расхождения бластомеров.
5. Выберите несколько правильных ответов.

^ ПРИ ОБРАЗОВАНИИ НЕРВНОЙ ТРУБКИ ПРОИСХОДИТ:


  1. Избирательное размножение клеток.

  2. Сгущение мезодермальных клеток.

  3. Избирательная гибель клеток.

  4. Адгезия клеток.

6. Выберите один правильный ответ.

^ ЭМБРИОНАЛЬНАЯ ИНДУКЦИЯ НАЧИНАЕТ РЕГУЛИ­РОВАТЬ РАЗВИТИЕ ПОЗВОНОЧНЫХ В ПЕРИОД:


  1. Дробления.

  2. Ранней гаструляции.

  3. Нейруляции.

  4. Органогенеза.

7. Выберите несколько правильных ответов.

^ СТАДИЯ ЗАВИСИМОЙ ДИФФЕРЕНЦИРОВКИ КЛЕТОК ХАРАКТЕРИЗУЕТСЯ:


  1. Повышением чувствительности к действию индукторов.

  2. Понижением чувствительности к действию индукторов.

  3. Отсутствием способности к трансдифференцировке.

  4. Способностью к трансдифференцировке.
8. Выберите один правильный ответ.

^ ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ РАЗВИТИЯ У МЛЕКО­ПИТАЮЩИХ НАЧИНАЕТСЯ В ПЕРИОД:


  1. Гаструляции.

  2. Дробления.

  3. Гисто- и органогенеза.

  4. Плодный.

9. Выберите несколько правильных ответов.

^ НАИБОЛЬШАЯ ЧУВСТВИТЕЛЬНОСТЬ ОРГАНОВ ЗАРО­ДЫША К ДЕЙСТВИЮ ТЕРАТОГЕНА В ПЕРИОДЫ:


  1. Закладки зачатков органов.

  2. Закладки новых структур органа.

  3. Дифференцировки клеток органа.

  4. Роста органа.

10. Установите соответствие.

^ ПОРОКИ РАЗВИТИЯ: МЕХАНИЗМЫ ВОЗНИКНО ВЕНИЯ:


  1. Наследственные. а) генеративные мутации;

  2. Ненаследственные. б) мутации в бластомерах;
в) мутации в клетках зачатков органов;

Г) нарушение функций генов;

Д) нарушение закладки органов.

Термины:

Адгезия, биологическая смерть, взрослое состояние, гуморальной регуляции онтогенеза, дефинитивные структуры органов, дорепродуктивный период, зародыш, зародышевые оболочки, критический период развития, критические периоды эмбриогенеза, личиночное развитие, развитие половозрелого организма, репродуктивный период, пострепродуктивный период, половое созревание, прямое развитие, непрямое развитие (развитие с метаморфозом), сиреномелия, старение, циклопия, ювенальный период, эмбриональной индукции.

Основная литература

1. Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. - Кн. 1. - С. 150, 280-282, 294-295, 297-298, 317-368, 372, 409-418.

2. Пехов А.П. Биология и общая генетика. - М.: Изд-во РУДН, 1993. - С. 166, 201-219.

Дополнительная литература

1. Газарян К.Г., Белоусов М.В. Биология индивидуального развития жи­вотных. - М.: Высшая школа, 1983.

2. Гилберт С. Биология развитая. - М.: Мир, 19^9,3, т. 1; 1994, т. 2; 1995, т. 3.

    Реализация наследственной информации в становлении дефинитивного фенотипа.

    Избирательная активность генов в развитии.

    Механизмы онтогенеза на клеточном и организменном уровнях.

Главный вопрос биологии : каким образом из одного яйца возникает множество разных типов клеток! А из одного генотипа – несколько тысяч разных фенотипов?

У млекопитающих из одной зиготы формируются более 1000 разных типов клеток.

Карл Маркс : «Всякое развитие независимо от его содержания можно представить как ряд различных ступеней развития, связанных друг с другом таким образом, что одна является отрицанием другой».

Развитие – непрерывный процесс изменения, обычно сопровождающийся увеличением веса, размеров, изменением функций. Почти всегда предполагает рост, который может быть связан с увеличением размера клеток или их количества. Вес яйцеклетки 1*10х(-5)г, сперматозоида – 5х10(-9)г. У новорожденного – 3200 г.

Одним увеличением массы невозможно обеспечить формирование признаков, характерных для организма.

Этапы развития.

Детерминация клеток

Дифференцировка клеток

Образование новой формы, морфогенез.

Нарушение любого этапа может привести к возникновению пороков развития и уродств.

Детерминация - ограничение, определение – прогрессивное ограничение онтогенетических возможностей эмбриональных клеток. Это означает, что на этапе детерминации клетки по своим морфологическим признакам отличаются от эмбриональных клеток, но функции выполняют еще клеток эмбриональных. Т.е. детерминированные клетки еще не способны выполнять специальные функции. У млекопитающих детерминированные клетки появляются на стадии восьми бластомеров. Химерные, аллоферные организмы. В качестве объекта исследования мыши. Зародыши мышей на стадии 8 бластомеров с помощью фермента проназы извлекают и разбивают на отдельные бластомеры, производят смешивание бластомеров от разных животных в пробирке, а затем вшивают в матку. В результате получаются нормальные животные, но окраска частей различна, т.к. исходные формы были разных цветов. Если подобную операцию проводить на более поздних этапах эмбриогенеза – гибель животных, что доказывает детерминацию клеток на данном этапе.

Процесс детерминации находится под генетическим контролем. Это ступенчатый, многоэтапный процесс, изученный пока недостаточно хорошо. По-видимому, в основе детерминации – активация тех или иных генов и синтез разных и-РНК и, возможно, белков.

Детерминация может нарушаться, что приводит к мутациям. Классический пример – развитие у мутантов дрозофилы вместо усиков ротового аппарата – конечности. Формирование конечностей в нехарактерных местах.

Дифференцировка . Детерминированные клетки постепенно вступают на путь развития (неспециализированные эмбриональные клетки превращаются в дифференцированные клетки организма). Дифференцированные клетки в отличие от детерминированных обладают специальными морфологическими и функциональными организациями. В них происходят строго определенные биохимические реакции и синтез специальных белков.

Клети печени – альбумин.

Клетки эпидермиса кожи – кератин.

Мышцы – актин, миозин, миелин, миоглобин.

Молочные железы – казеин, лактоглобулин.

Щитовидная железа – тироглобулин.

Слизистая оболочка желудка – пепсин.

Поджелудочная железа – трипсин, химотрипсин, амилаза, инсулин.

Как правило, дифференциация происходит в эмбриональном периоде и приводит к необратимым изменениям полипотентных клеток эмбриона.

Синтез специальных белков начинается на очень ранних стадиях развития. Касательно стадии дробления: бластомеры отличаются друг от друга цитоплазмой. В цитоплазме различных бластомеров имеются разные вещества. Ядра всех бластомеров несут одну и ту же генетическую информацию, т.к. имеют одинаковое количество ДНК и идентичный порядок расположения пар нуклеотидов. Вопрос о специализации до сих пор не нашел ответа.

1939 год Томас Морган выдвинул гипотезу: « дифференцировка клеток связана с активностью разных генов одного и того же генома». В настоящее время известно, что в дифференцированных клетках работает около 10% генов, а остальные неактивны. В силу этого в разных типах специализированных клеток функционируют свои определенные гены. Специальными опытами по пересадки ядер из клеток кишечника головастика в безъядерную яйцеклетку было доказано, что в дифференцированных клетках сохраняется генетический материал и прекращение функционирования определенных генов обратимо. Из яйца лягушки удаляли ядро, брали ядро из клетки кишечника головастика. Развитие не происходило, иногда эмбриогенез происходил нормально. Строение взрослой лягушки полностью определялось ядром.

На функционирование генов в процессе развития многоклеточного организма оказывают влияние сложные и непрерывные взаимодействия ядра и цитоплазмы и межклеточные взаимодействия.

Регуляция дифференцировки происходит на уровне транскрипции и на уроне трансляции.

Уровни регуляции дифференцировки клеток .

    На уровне транскрипции.

Система оперона

Участие белков – гистонов, которые образуют комплекс с ДНК.

Участки ДНК, покрытые гистоном, неспособны к транскрипции, а участки без гистоновых белков транскрибируются. Таким образом, белки участвуют в контроле над считываемыми генами.

Гипотеза дифференциальной активности генов: « Предположение о том, что в разных генах дифференцированных клеток репрессированы (закрыты для считывания) разные участки ДНК и поэтому синтезируются разные виды м-РНК».

    На уровне трансляции.

На ранних стадиях эмбрионального развития весь белковый синтез обеспечивается матрицами, созданными в яйцеклетке до оплодотворения под управлением ее генома. Синтез и-РНК не происходит, меняется характер синтеза белка. У разных животных синтез включается по-разному. У амфибий синтез и-РНК после 10 деления, синтез т-РНК на стадии бластулы. У человека синтез и-РНК после 2го деления. Не все молекулы и-РНК, находящиеся в яйцеклетке одновременно используются для синтеза полипептидов, белков. Часть из них некоторое время молчит.

Известно, что во время развития организма закладка органов происходит одновременно.

Гетерохрония – закономерность, предполагающая неодновременное развитие.

Процесс дифференцировки клеток связан с депрессией определенных клеток. В процессе гаструляции депрессия генов зависит от влияния неодинаковой цитоплазмы в эмбриональных клетках. В органогенезе основное значение у межклеточных взаимодействий. Позже регуляция активности генов осуществляется через гормональные связи.

В зародыше разные участки влияют друг на друга.

Ели разделить зародыш тритона на стадии бластулы пополам, то из каждой половины развивается нормальный тритон. Если то же самое проделать после начала гаструляции, из одной половины формируется нормальный организм, а другая половина дегенерирует. Нормальный зародыш образуется из той половины, где располагались дорсальная губа бластопора. Это доказывает, что

    клетки дорсальной губы обладают способностью организовывать программу развития зародыша

    никакие другие клетки не способны это делать.

Спинная губа индуцирует в эктодерме образование головного и спинного мозга. Сама она дифференцируется в спинную хорду и сомиты. В дальнейшем многие соседние ткани обмениваются индукционными сигналами, что приводит к образованию новых тканей и органов. Функцию индукционного сигнала выполняют гормоны местного действия, которые стимулируют рост. Дифференцировку, служат факторами хемотаксиса, тормозят рост. Каждая клетка продуцирует гормон местного действия – кейлон, который тормозит вступление клеток в синтетическую фазу митоза и временно тормозит митотическую активность клеток этой ткани и вместе с антикейлоном направляет клетки по пути дифференцировки.

Морфогенез – образование формы, принятие новой формы. Образование формы чаще всего происходит в результате дифференциального роста. В основе морфогенеза лежит организованное движение клеток и групп клеток. В результате перемещения клетки попадают в новую среду. Процесс происходит во времени и пространстве.

Дифференцированные клетки не могут существовать самостоятельно, кооперируются с другими клетками, образуя ткани и органы. В образовании органов важно поведение клеток, которое зависит от клеточных мембран.

Клеточная мембрана играет роль в осуществлении

Клеточных контактов

Агрегации.

Межклеточный контакт – подвижные клетки приходят в контакт и расходятся, не теряя подвижности.

Адгезия – пришедшие в контакт клетки длительное время прижаты друг к другу.

Агрегация – между адгезированными клетками возникают специальные соединительнотканные или сосудистые структуры, т.е. происходит формирование простых клеточных агрегатов тканей или органов.

Для формирования органа необходимо присутствие в определенном количестве всех клеток, обладающих общим органным свойством.

Эксперимент с дезагрегированными клетками амфибий. Взяты 3 ткани – эпидермис нервной пластинки, участок нервных валиков, клетки эктодермы кишечника. Клетки дезагрегированы случайным образом и смешаны. Клетки начинают постепенно рассортировываться. Причем процесс сортировки продолжается до тех пор, пока не образуются 3 ткани: сверху слой эпидермальной ткани, затем нервная трубка и внизу - скопление эндодермальных клеток. Это явление получило название сегрегации клеток – избирательной сортировки.

Смешивали клетки глазных зачатков и хряща. Раковые клетки не способны к сегрегации и неотделимы от нормальных. Остальные клетки подвержены сегрегации.

Критические периоды развития.

Критический период – период, который связан с изменением обмена веществ (переключение генома).

В онтогенезе человека выделяют:

1. развитие половых клеток

2. оплодотворение

3. мплантация (7-8 неделя)

4. развитие осевых органов и формирование плаценты(3-8 недели)

5. стадия роста головного мозга (15-20 недели).

6. формирование основных функциональных систем организма и дифференцировка полового аппарата(10-14 недели).

7. рождение(0-10 дней)

8. период грудного возраста – максимальная интенсивность роста, функционирование системы энергопродукции и др.

9. дошкольный (6-9 лет)

10. пубертатный - для девочек 12. для мальчиков 13 лет.

11. окончание репродуктивного периода, у женщин – 55, у мужчин – 60 лет.

В критические периоды развития проявляются мутации, поэтому надо быть внимательным к этим периодам. Все генетические программы связаны с детскими учреждениями.

Наследственные пороки (уродства) вызваны изменениями у родителей в ходе гаметогенеза в генотипе.

Наследственные уродства – выражены из-за повреждающих факторов среды.

Описано около 50 форм наследственной глухоты. Около 250 аномалий глаза, около 100 аномалий скелета.

В развитии организма большое значение имеют иммунная, эндокринная и нервная системы.

Иммунная система способствует сохранению и зарождению жизни, контролирует генотипическое постоянство, выполняет контрольные функции. На ранних стадиях эмбриогенеза формируется из стволовых клеток.

До 2 месячного возраста развивается тимус, угасает к периоду полового созревания.

Иммунная система очищает организм от мутирующих генотипов.

12. Назовите клеточные механизмы, срабатывающие в процессе гаструляции у млекопитающих.

Дробление заканчивается с образованием морулы, клетки которой подразделяются на внутреннюю массу клеток, из которых впоследствии развивается эмбрион, и наружный полый клеточный пузырек трофобласт. Из него развиваются провизорные органы. Эта стадия называется бластоцистой. Собственно гаструляция начинается с обособления слоя клеток эмбриобласта, обращенного в полость бластоцисты. Так образуется гипобласт - будущая энтодерма зародыша. Клетки краевой зоны этого зачатка распространяются по внутренней поверхности трофобласта, ограничивая полость желточного мешка, который у плацентарных млекопитающих рудиментарен. Гипобласт растет в ширину и вся внутренняя клеточная масса увеличивается и превращается в дисковидную клеточную пластинку, сходную с зародышевым диском у птиц и рептилий. Затем отдельные клетки мигрируют и участвуют в образовании всех зародышевых листков. Между клетками внутренней клеточной массы появляется щель, которая затем превращается в амниотическую полость.

Ответ: Дифференцировка, пролиферации, перемещение, сортировка, адгезия.

13. В лаборатории Эдельмана (США) были проделаны следующие опыты. Сделайте логический вывод из них.

В культуру клеток животных тканей, которые первоначально были отделены друг от друга, не организованы в пространстве и напоминали мезенхиму, были введены ДНК, кодирующие белки клеточной адгезии (САМ от англ. Се11-аdhesion molecules). После этого клетки объединились в пласт, напоминающий эпителиальный. Когда пласт сформировался, между клетками возникли щелевые и адгезивные контакты.

Ответ: Молекулы клеточной адгезии (SAM) ответственны за взаимодействие клеток в зародыше .

14. Какие выводы можно сделать из следующих экспериментах:

1) Если путем центрифугирования (у морского ежа) или перешнуровки оплодотворенных яйцеклеток (у тритона) получить их безъядерные фрагменты, то в обоих случаях дробление при участии ахроматинового митотичёского аппарата может привести к образованию безъядерных бластулоподобных структур. Однако дальше развитие не пойдет.

2)Если объединить в опыте безъядерную цитоплазму яйцеклетки одного вида с ядром сперматозоида другого вида, то во многих случаях развитие таких клеток останавливается, достигнув стадии гаструлы.

Ответ: Опыты демонстрирует тот факт, что самые начальные этапы развития определяются продуктами материнских генов яйцеклетки и только к началу гаструляции активизируются гены зиготы.

15. Какое явление наблюдал Г. Шпеман на примере формирования глаза?

Наиболее ранняя закладка глаза представляет участок ткани промежуточного мозга, глазной пузырь, растущий по направлению к кожной эктодерме, где на месте их сближения образуется хрусталик в виде впячивания эктодермы. Если на одной стороне зародыша удалить закладку глазного пузыря, то на этой стороне хрусталик не образуется. Если, наоборот, закладку глазного пузыря пересадить под кожу в другом месте головы или туловища, то здесь на границе эктодермы возникает хрусталик.

Ответ: Шпеман наблюдал явление эмбриональной индукции.

16. Какое явление было установлено в опытах эмбриологов Дриш и Шпемана?

Они показали, что ядра ранних бластомеров морских ежей и тритонов способны обеспечить дифференцировку любых типов клеток. В их опытах бластомер, который в норме должен былдать начало лишь части зародыша, оказался способным дать в процессе развития целый организм.

Ответ: Явление эквивалентности генома разных клеток зародыша – тотипотентность.

Медицина и ветеринария

Механизмы онтогенеза Деление клеток Миграция клеток Сортировка клеток Гибель клеток Дифференцировка клеток Эмбриональная индукция Генетический контроль развития Деление клеток При делении клеток из зиготы одноклеточной стадии развития возникает многоклеточный организм. Деление клеток обеспечивает рост организма. Избирательное размножение клеток обеспечивает морфогенетические процессы.

Лекция 17. Тема: Принципы и механизмы регуляции онтогенеза.

План.

1. Механизмы онтогенеза

  1. Деление клеток
    1. Миграция клеток
    2. Сортировка клеток
    3. Гибель клеток
    4. Дифференцировка клеток
    5. Эмбриональная индукция
    6. Генетический контроль развития

2. Целостность онтогенеза

2.1 Детерминация. Мозаичное и регуляционное развитие

2.2 Эмбриональная регуляция

2.3 Морфогенез

3.2. Аномалии и пороки развития. Классификация врожденных пороков развития

4. Видоизменения периодов онтогенеза, имеющие экологическое и эволюционное значение.

1. Механизмы онтогенеза

1.1 Деление клеток

При делении клеток из зиготы (одноклеточной стадии развития) возникает многоклеточный организм. Деление клеток обеспечивает рост организма. Избирательное размножение клеток обеспечивает морфогенетические процессы. В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Количество циклов клеточных делении в ходе онтогенеза генетически предопределено. Известна мутация, изменяющая размеры организма за счет одного дополнительного клеточного деления. Это мутация gt (giant), описанная у Drosophila те1апо g аster.

1.2. Миграция клеток

Миграции клеток, или клеточные перемещения, имеют большое значение, начиная с процесса гаструляции и далее, в процессах морфогенеза. Нарушение миграции клеток в ходе эмбриогенеза приводит к недоразвитию органов или к их гетеротопиям, изменениям нормальной локализации. То и другое представляет собой врожденные пороки развития.

Существуют гипотезы о дистантных воздействиях на клетки на основе хемотаксиса и о контактных воздействиях.

1.3. Сортировка клеток

В процессе эмбриогенеза клетки не только активно перемещаются, но и «узнают» друг друга, т. е. образуют скопления и пласты только с определенными клетками. Значительные координированные перемещения клеток характерны для периода гаструляции. Смысл этих перемещений заключается в образовании обособленных друг от друга зародышевых листков с совершенно определенным взаимным расположением. Клетки как бы сортируются в зависимости от свойств, т. е. избирательно. Подобную агрегацию клеток зародышевого листка с себе подобными можно объяснить способностью к избирательному слипанию клеток одного типа между собой. Одновременно это является проявлением ранней дифференцировки клеток на стадии гаструлы.

1.4. Гибель клеток

В развитии зародышей наряду с размножением клеток важную роль играют процессы гибели клеток. Наиболее яркие примеры разрушения клеток и органов относятся к постэмбриональным стадиям метаморфоза земноводных и насекомых. В ходе эмбрионального развития высших позвоночных и человека также имеют место процессы дегенерации органов, которые вначале закладываются, а затем подвергаются некрозу. Немалое значение принадлежит процессам гибели клеток при образовании полостей тела или сосудов (так называемая кавитация), имеющих вначале вид тяжей без просвета.

Генетический контроль клеточной гибели прослеживается также на примере мутаций. Анализ мутации у цыпленка показывает, что в конечности отсутствуют передняя и задняя некротические зоны, в результате чего не происходит формирования контуров, сужающих конечность, и лапка получается очень широкой. Кроме того, у таких мутантов отсутствует область некротизирующих клеток, в результате чего не происходит разделения большой и малой берцовых костей. Существуют также мутации, расширяющие зоны некроза. У дрозофилы мутация Ваг сильно уменьшает глаза, а мутация vestigial уменьшает крылья за счет увеличения участков гибели клеток. Описаны подобные мутации и у кур.

1.5 Дифференцировка клеток

Дифференцировка— это процесс, в результате которого клетка становится специализированной, т. е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного клеточного цикла. Примером может служить дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в поверхностные слои, происходит накопление кератина. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток.

Зародышевые листки и их производные являются примером ранней дифференцировки, приводящей к ограничению потенций клеток зародыша.

Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время, что указывает на координированность и интегрированность эмбрионального развития.

У животных отдельные соматические клетки после стадии бластулы, как правило, не способны развиваться в целый нормальный организм, но их ядра, будучи пересажены в цитоплазму овоцита или яйцеклетки, начинают вести себя соответственно той цитоплазме, в которой они оказались.

Экспрессия гена в признак— это сложный этапный процесс, который можно изучать в основном по продуктам активности генов, с помощью электронного микроскопа или по результатам развития особи. Визуальное наблюдение в электронный микроскоп уровня генной активности, проведено в отношении только отдельных генов — рибосомных, генов хромосом типа ламповых щеток и некоторых других. На электронограммах отчетливо видно, что одни гены транскрибируются активнее других. Хорошо различимы и неактивные гены.

1.6 Эмбриональная индукция

Эмбриональная индукция — это взаимодействие частей развивающегося зародыша. Главным в эмбриональной индукции является то, что один участок зародыша влияет на судьбу другого участка. Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.

Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.

Г. Шпеман назвал спинную губу бластопора первичным эмбриональным организатором. Первичным потому, что на более ранних стадиях развития подобных влияний обнаружить не удавалось, а организатором потому, что влияние происходило именно на морфогенез. В настоящее время установлено, что главная роль в спинной губе бластопора принадлежит хордомезодермальному зачатку, который назвали первичным эмбриональным индуктором, а само явление, при котором один участок зародыша влияет на судьбы другого,— эмбриональной индукцией.

Различают гетерономную и гомономную виды индукции. Чтобы воспринять действие индуктора, компетентная ткань должна обладать хотя бы минимальной организацией. Одиночные клетки не воспринимают действие индуктора, а чем больше клеток в реагирующей ткани, тем активнее ее реакция. Для оказания индуцирующего действия иногда достаточно лишь одной клетки индуктора.

1.7. Генетический контроль развития

Очевидно, что генетический контроль развития существует, ибо как тогда понять, почему из яйца крокодила развивается крокодил, а из яйца человека — человек. Каким образом гены определяют процесс развития? Это центральный и очень сложный вопрос, к которому ученые начинают подходить, но для всеобъемлющего и убедительного ответа на него данных явно недостаточно. Главным приемом ученых, изучающих генетику индивидуального развития, является использование мутаций. Выявив мутации, изменяющие онтогенез, исследователь проводит сравнение фенотипов мутантных особей с нормальными. Это помогает понять, как данный ген влияет на нормальное развитие. С помощью многочисленных сложных и остроумных методов стараются определить время и место действия гена.

Анализ генетического контроля затрудняется несколькими моментами. Прежде всего тем, то роль генов неодинакова. Для анализа генетического контроля необходимо, кроме того, знать место первичного действия данного гена, т.е. следует различать случаи относительной, или зависимой, плейотропии от прямой, или истинной, плейотропии. Наконец, следует различать еще два способа действия мутаций на фенотип, вызывающих дизруптивные либо гомеозисные изменения. В первом случае, и это бывает чаще всего, мутации приводят к нарушению нормального развития, отсутствию или аномальному строению органов. В других случаях отклонение от нормы заключается в том, что под действием мутации типичный орган замещается гомологичным или совсем другим, но с нормальным строением. Это особый класс мутаций, описанный у насекомых и получивший название гомеозисных мутаций.

Существуют мутации, которые указывают на существование у многих видов животных так называемых генов с материнским эффектом. Особенность этих генов состоит в том, что материнский геном во время овогенеза продуцирует ферменты, необходимые для метаболизма раннего зародыша, а также передает информацию, касающуюся расположения и организации структур зародыша. Органогенез — период, когда действие мутаций проявляется в большой мере. Развитие каждого органа и тем более системы органов контролируется совокупным координированным действием сотен генов. О значении генетического контроля онтогенеза говорят многочисленные болезни, связанные с геномными и хромосомными мутациями.

2. Целостность онтогенеза

2.1. Детерминация

Детерминацией называют возникновение качественных различий между частями развивающегося организма, которые предопределяют дальнейшую судьбу этих частей прежде, чем возникают морфологические различия между ними. Детерминация предшествует дифференцировке и морфогенезу.

Исторически явление детерминации было обнаружено и активно обсуждалось в конце XIX в. В. Ру в 1887 г. укалывал горячей иглой один из первых двух бластомеров зародыша лягушки. Убитый бластомер оставался в контакте с живым. Из живого бластомера развивался зародыш, но не до конца и только в виде одной половины. Из результатов опыта Ру сделал вывод о зародыше как мозаике бластомеров, судьба которых предопределена. В дальнейшем стало ясно, что в описанном опыте Ру убитый бластомер, оставаясь в контакте с живым, служил препятствием для развития последнего в целый нормальный зародыш.

В 90-х гг. прошлого столетия О. Гертвиг и другие исследователи показали, что при полном разделении двух бластомеров амфибий из каждого развивается целый нормальный зародыш. Впоследствии многие ученые производили опыты по разделению бластомеров на разных этапах дробления у разных видов животных. Результаты оказались тоже разными. У многих беспозвоночных, например у гребневиков, круглых червей, спирально дробящихся кольчатых червей и моллюсков, а также у ящериц, изолированные бластомеры дают такие же зачатки, какие получаются из них при нормальном развитии. Они как бы обладают способностью к самодифференцировке.

Яйца таких животных назвали мозаичными. Очень четко это показано у гребневиков, обладающих в норме восемью рядами гребных пластинок. При развитии зародыша из 1/2 яйца получается четыре ряда гребных пластинок, из 1/4—только два, из 1/8—один ряд. На этом основании предположили, что у подобных форм в период овоплазматической сегрегации достигается жесткая, необратимая расстановка структур.

Приведенные примеры показывают, что детерминация связана не со свойствами отдельных клеток, но со свойствами развивающегося организма как целостной системы, обладающей взаимосвязанными и взаимозависимыми частями.

2.2. Эмбриональная регуляция

Сохранение нормального хода развития целого зародыша после его нарушения, естественного или искусственного, получило название эмбриональной регуляции, а достижение нормального конечного результата развития разными путями — эквифинальности.

Для изучения регуляционных возможностей зародышей использовали следующие методические приемы: 1) удаление части материала зародыша; 2) добавление избыточного материала; 3) перемешивание материала, а также изменение пространственного взаиморасположения путем центрифугирования или сдавления. Эти манипуляции проводили на стадиях яйца, зиготы, дробления, гаструляции и органогенеза.

Потенции — это максимальные возможности элементов зародыша, т.е. направления их развития, которые могли бы осуществиться. В норме реализуется лишь одно из них, а остальные могут быть выявлены в эксперименте. Широкие потенции называют еще тотипотентностью.

В отношении млекопитающих было высказано предположение, что в их зародышах предетерминированные локализованные участки цитоплазмы не играют никакой роли. Эмбриональные регуляции были открыты немецким эмбриологом Г. Дришем (1908). Таким образом, детерминация и эмбриональная регуляция являются противоположными свойствами и теснейшим образом взаимосвязаны в системе целостного развивающегося зародыша.

2.3. Морфогенез

Морфогенез — это процесс возникновения новых структур и изменения их формы в ходе индивидуального развития организмов. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т. е. не возвращающимся в прежнее состояние и по большей части необратимым.

Морфогенез на надклеточном уровне начинается с гаструляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологические перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого их них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве протекает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Таким образом, морфогенез представляет собой многоуровневый динамический процесс. В настоящее время уже многое известно о тех структурных превращениях, которые происходят на внутриклеточном и межклеточном уровнях и которые преобразуют химическую энергию клеток в механическую, т. е. об элементарных движущих силах морфогенеза.

В настоящее время разрабатывают несколько подходов к проблеме регуляции и контроля морфогенеза.

Концепция физиологических градиентов, предложенная в начале XX в. американским ученым Ч. Чайльдом, заключается в том, что у многих животных обнаруживаются градиенты интенсивности обмена веществ и совпадающие с ними градиенты повреждаемости тканей. Эти градиенты обычно снижаются от переднего полюса животного к заднему. Они определяют пространственное расположение морфогенеза и цитодифференцировки. Более современной является концепция позиционной информации, по которой клетка как бы оценивает свое местоположение в координатной системе зачатка органа, а затем дифференцируется в соответствии с этим положением. Концепция морфогенетических полей, базирующаяся на предположении о дистантных либо контактных взаимодействиях между клетками зародыша, рассматривает эмбриональное формообразование как самоорганизующийся и самоконтролируемый процесс. Предыдущая форма зачатка определяет характерные черты его последующей формы. Кроме того, форма и структура зачатка способны оказать обратное действие на биохимические процессы в его клетках. Были предложены математические модели формообразования, например, перехода эмбрионального головного мозга из стадии одного пузыря в стадию трех пузырей.

3. Роль нарушений механизмов онтогенеза в патологии человека

3.1. Критические периоды в онтогенезе человека

С конца XIX в. существует представление о наличии в онтогенетическом развитии периодов наибольшей чувствительности к повреждающему действию разнообразных факторов. Эти периоды получили название критических, а повреждающие факторы — тератогенных. Единодушия в оценке различных периодов, как более или менее устойчивых, не существует.

Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является большая чувствительность его в данный момент к действию патогенного фактора, чем у других органов. При этом действие разных факторов может вызвать одну и ту же аномалию. Установлено два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыша, второй — с формированием плаценты.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 недели) периода может привести к врожденным уродствам. У каждого органа есть свой критический период, во время которого его развитие может быть нарушено. Чувствительность различных органов к повреждающим воздействиям зависит от стадии эмбриогенеза.

Факторы, оказывающие повреждающее воздействие, не всегда представляют собой чужеродные для организма вещества или воздействия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время. К ним относят кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение.

3.2. Аномалии и пороки развития.

Классификация врожденных пороков развития

Врожденными пороками развития называют такие структурные нарушения, которые возникают до рождения (в пренатальном онтогенезе), выявляются сразу или через некоторое время после рождения и вызывают нарушение функции органа. Последнее отличает врожденные пороки развития органов от аномалий, при которых нарушение функции обычно не наблюдается. Существует несколько различных критериев, на основе которых классифицируют врожденные пороки развития. В зависимости от причины все врожденные пороки развития делят на наследственные, экзогенные (средовые) и мультифакториальные.

Наследственными называют пороки, вызванные изменением генов или хромосом в гаметах родителей, в результате чего зигота с самого возникновения несет генную, хромосомную или геномную мутацию. Экзогенными называют пороки, возникшие под влиянием тератогенных факторов.

Мультифакториальными называют пороки, которые развиваются под влиянием как экзогенных, так и генетических факторов. Кроме того, к этой группе относят все пороки развития, в отношении которых четко не выявлены генетические или средовые причины.

Причины врожденных пороков устанавливаются при применении синдромологического анализа. Синдромологический анализ — это обобщенный анализ фенотипа больных с целью выявления устойчивых сочетаний признаков, что помогает в установлении причины и механизмов возникновения пороков.

В зависимости от стадии, на которой проявляются генетические или экзогенные воздействия, все нарушения, происходящие в пренатальном онтогенезе, подразделяют на гаметопатии, бластопатии, эмбриопатии и фетопатии. В зависимости от последовательности возникновения различают первичные и вторичные врожденные пороки. Первичные пороки обусловлены непосредственным действием тератогенного фактора, вторичные — являются осложнением первичных.

По распространенности в организме первичные пороки подразделяют на изолированные, или одиночные, системные, т. е. в пределах одной системы, и множественные, т. е. в органах двух систем и более. Комплекс пороков, вызванный одной ошибкой морфогенеза, называют аномаладом.

В основу классификации врожденных пороков, принятой ВОЗ, положен анатомо-физиологический принцип (по месту локализации).

По филогенетической значимости можно все врожденные пороки развития разделить на 1) филогенетически обусловленные и 2) не связанные с предшествующим филогенезом, т. е. нефилогенетические.

Филогенетически обусловленными называют такие пороки, которые по виду напоминают органы животных из типа Хордовые и подтипа Позвоночные. Если они напоминают, органы предковых групп или их зародышей, то такие пороки называют анцестральными (предковыми) или атавистическими. Примерами могут служить несращение дужек позвонков, шейные и поясничные ребра, несращение твердого нёба и др. Если пороки напоминают органы родственных современных или древних, но боковых ветвей животных, то их называют аллогенными. Филогенетически обусловленные пороки показывают генетическую связь человека с другими позвоночными, а также помогают понять механизмы возникновения пороков в ходе эмбрионального развития.

Нефилогенетическими являются такие врожденные пороки, которые не имеют аналогов у нормальных предковых или современных позвоночных животных. К таким порокам можно отнести, например, двойниковые уродства и эмбриональные опухоли, которые появляются в результате нарушения эмбриогенеза, не отражая филогенетических закономерностей.

4. Видоизменения периодов онтогенеза, имеющие экологическое и эволюционное значение

Диапауза. Деэмбрионизация. Эмбрионизация. Неотения.


А также другие работы, которые могут Вас заинтересовать

28325. Недействительность сделок: понятие, виды, последствия 22.11 KB
Недействительность сделки означает что она не влечет юридических последствий на достижение которых была направлена но в то же время порождает последствия установленные законом в связи с ее не действительностью. ГК РФ подразделяет недействительные сделки на ничтожные и оспоримые. В теории гражданского права такие сделки называются абсолютно недействительными. Ничтожные сделки не влекут возникновения изменения или прекращения гражданских прав и обязанностей на которые они были направлены.
28326. Осуществление гражданских прав и исполнение обязанностей: понятие, принципы и способы осуществления 15.41 KB
Под осуществлением гражданского права понимается совершение действий по реализации возможностей заложенных в содержании субъективного права. Содержание границы того или иного субъективного права определяются нормативными актами или договорами например согласно статье 209 ГК РФ содержание права собственности составляет возможность владеть пользоваться и распоряжаться вещью. 9 ГК РФ граждане и юридические лица осуществляют принадлежащие им гражданские права по своему усмотрению принцип диспозитивности. Носитель субъективного права...
28327. Пределы осуществления субъективных гражданских прав. Злоупотребление правом 13.92 KB
Пределы осуществления субъективных гражданских прав. Злоупотребление правом. Пределы осуществления субъективных гражданских прав ОСГП это законодательно очерченные границы деятельности управомоченных лиц по реализации возможностей составляющих содержание данных прав. Пределы ОСГП: а осуществление субъективных гражданских прав е имеет временные границы т.
28328. Представительство по гражданскому праву: понятие, виды, основания возникновения 16.43 KB
Представительство отношение в соответствии с которым сделка совершенная одним лицом представителем от имени другого лица представляемого в силу полномочия основанного на доверенности указании закона либо акта уполномоченного на то органа государственного местного самоуправления непосредственно создает изменяет и прекращает гражданские права и обязанности представляемого ст. Представитель это лицо юридическими действиями которого приобретаются изменяются или прекращаются права и обязанности для представляемого по отношению...
28329. Доверенность по гражданскому праву 15.53 KB
Доверенность по гражданскому праву. Доверенность это документ выдаваемый представителю в целях определения характера и объема предоставляемых ему полномочий. Общая доверенность определяет полномочия на совершение разнообразных сделок и иных юридических действий на управление имуществом гражданина руководителю филиала юридического лица. Специальная доверенность необходима для совершения однородных действий на распоряжение вкладом на вождение автомобиля на ведение судебных и арбитражных дел.
28330. Защита гражданских прав: понятие, предмет и форма защиты 14.21 KB
Защита гражданских прав: понятие предмет и форма защиты. Защита гражданских прав выражается в действиях субъектов права а также уполномоченных органов по предупреждению правонарушения или восстановлению нарушенных прав. Право на защиту выражается в применении мер имущественного характера и направлено на компенсацию восстановление существующего положения и реализуется в исковой форме в судебном порядке. Защита гражданских прав в административном порядке осуществляется лишь в случаях предусмотренных законом.
28331. Основные способы защиты гражданских прав 15.58 KB
Выбор того или иного способа защиты определяется сущностью нарушенного права и характером нарушения. Признание права применяется в тех случаях когда необходимо устранить неопределенность в существовании субъективного права. В основном используется для защиты абсолютных прав права собственности авторства. Восстановление положения существовавшего до нарушения права применяется когда субъективное право в результате нарушения не прекратило своего существования например истребование собственником имущества из чужого незаконного владения.
28332. Самозащита гражданских прав 14.5 KB
Самозащита гражданских прав. Под самозащитой гражданских прав понимается совершение управомоченным лицом действий фактического порядка направленных на защиту нарушенного права. В статье 12 ГК РФ самозащита определяется как способ защиты гражданских прав однако это форма защиты которая может осуществляться различными способами. Применение мер самозащиты допускается в основном для защиты абсолютных личных и имущественных прав жизни здоровья права собственности.
28333. Меры оперативного воздействия на нарушителя гражданских прав 16.7 KB
Меры оперативного воздействия на нарушителя гражданских прав. Под мерами оперативного воздействия понимаются такие юридические средства которые применяются к нарушителю непосредственно управомоченной стороной гражданского правоотношения в одностороннем порядке без обращения за содействием к компетентным органам. Юрисдикционная форма защиты осуществляется различными управомоченными государством субъектами в судебном и административном порядке. Судебный порядок наиболее приспособлен к защите прав основанных на равенстве участников...

Развитие организмов базируется на генетической программе (заложенной в хромосомном аппарате зиготы) и происходит в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в онтогенезе особи.

Весь объем такой информации о совокупности признаков и свойств будущего организма содержится в ядре зиготы. Образование клеток тела многоклеточного животного осуществляется в процессе митотического деления зиготы и последующих поколений клеток, идентичных ей по своей генетической информации. И тем не менее тело сформированного организма состоит из разных типов клеток - нервных, мышечных, эпителиальных и т. д., - дифференцированных, отличающихся по своему строению и функциям. Почему же при наличии одинаковой у всех них генетической информации они столь разнообразны? Что же обеспечивает их дифференцировку в онтогенезе?

Генетическая основа дифференцировки - избирательная активность определенной части генов из общего набора в клетках разных тканей. В одних клетках функционирует одна группа генов, в других - иные группы. Соответственно, в каждом клеточном типе синтезируются комплексы специфических белков, определяющих структурные и функциональные свойства клеток. Этот феномен получил название дифференциальной экспрессии (активности ) генов. Возникают следующие вопросы: что же регулирует активность генов? Чем определяются различные пути развития клеток в формирующемся организме?

Далеко не все факторы, определяющие процессы дифференцировки, изучены. Однако известно, что на разных этапах онтогенеза активность генов зависит как от внутренних, так и от внешних факторов.

На самых ранних этапах дробления между формирующимися бластомерами возникают различия в химическом составе их цитоплазмы. Это объясняется неоднородностью цитоплазмы зиготы (например, у амфибий еще в яйцеклетке создается неравномерное распределение желтка и пигмента). Считается, что исходное различие в цитоплазматическом окружении ядер в бластомерах приводит к активации в них разных групп генов.

На более поздних этапах эмбрионального развития был обнаружен феномен эмбриональной индукции . Так называют влияние одной ткани на другую, соседнюю, которое приводит к образованию в месте контакта новой ткани (например, у амфибий при формировании гаструлы мезодерма возникает в эктодерме под воздействием контактирующей с ней энтодермы). Следовательно, эмбриональная индукция приводит к увеличению числа клеточных типов, а осуществляется она за счет выделения клетками особых веществ - индукторов (белков и других веществ).

На этапах эмбрионального и постэмбрионального развития большое значение имеет гормональная регуляция роста и дифференцировки. Гормоны (вещества, выделяемые железами внутренней секреции) оказывают воздействие на различные органы и ткани, обусловливают их нормальное развитие, активность генов, формирование пола и размножение организмов.

Рассмотрим, например, регуляцию метаморфоза у амфибий, в ходе которого в организме происходит множество разнообразных изменений. Одни органы (личинки головастика) разрушаются, другие (органы взрослой лягушки) усиленно растут и развиваются. Все эти изменения происходят под влиянием гормона щитовидной железы. Личинки амфибий, лишенные щитовидной железы, не претерпевают метаморфоза (однако у оперированных личинок его можно вызвать, если ввести им гормон).

Особенно наглядна роль гормонов на многочисленных примерах нарушений в деятельности желез внутренней секреции у человека, хорошо известных медикам. Так, при избыточном образовании гормона роста могут развиваться гиганты двух- и даже трехметровой высоты. В случае же недостаточной секреции этого гормона люди становятся карликами (рост - от 60 до 140 см).

На всех без исключения этапах онтогенеза значительное влияние на развитие организмов оказывают факторы внешней среды (температура, свет, давление, гравитация, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические факторы) (рис. 1).

Рис. 1. Влияние освещения солнечными лучами на рост цыплят. Цыплята одного возраста получали одинаковую пищу, не содержащую витамина D. Один цыпленок (справа) подвергался получасовому освещению солнцем

Даже однояйцовые близнецы (т. е. имеющие идентичный генетический материал), выросшие в различных условиях и подвергавшиеся воздействию различных факторов среды, могут очень сильно отличаться друг от друга по многим признакам. В биологии, медицине и ветеринарии накопилось огромное количество фактов, демонстрирующих повреждающее влияние различных факторов среды на развивающийся организм. В последние десятилетия сформировался самостоятельный раздел медико-биологических наук - тератология . Исследования в этой области посвящены изучению уродств и пороков развития организмов, выяснению причин их появления и роли факторов среды. Многие из выявленных тератогенов (факторов, вызывающих уродства и пороки развития) оказались различными химическими веществами, с которыми человек контактирует в повседневной жизни: никотином, алкоголем, различными синтетическими соединениями, лекарственными препаратами (при неправильном их применении). Выявлено тератогенное действие ряда физических факторов - различного вида излучения, ультразвука, вибрации, электромагнитного поля и т. п.

Исследования подобного рода имеют огромное практическое значение, возрастающее по мере загрязнения человеком окружающей его среды. Знание закономерностей процессов нормального развития и причин нарушений онтогенеза лежит в основе предупреждения аномалий пороков развития у людей.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции