18.10.2019

Как вывести число из под корня онлайн. Извлечение корня из большого числа


Математика зародилась тогда, когда человек осознал себя и стал позиционироваться как автономная единица мира. Желание измерить, сравнить, посчитать то, что тебя окружает, - вот что лежало в основе одной из фундаментальных наук наших дней. Сначала это были частички элементарной математики, что позволили связать числа с их физическими выражениями, позже выводы стали излагаться лишь теоретически (в силу своей абстрактности), ну а через некоторое время, как выразился один ученый, "математика достигла потолка сложности, когда из нее исчезли все числа". Понятие "квадратный корень" появилось еще в то время, когда его можно было без проблем подкрепить эмпирическими данными, выходя за плоскость вычислений.

С чего все начиналось

Первое упоминание корня, который на данный момент обозначается как √, было зафиксировано в трудах вавилонских математиков, положивших начало современной арифметике. Конечно, на нынешнюю форму они походили мало - ученые тех лет сначала пользовались громоздкими табличками. Но во втором тысячелетии до н. э. ими была выведена приближенная формула вычислений, которая показывала, как извлечь квадратный корень. На фото ниже изображен камень, на котором вавилонские ученые высекли процесс вывода √2 , причем он оказался настолько верным, что расхождение в ответе нашли лишь в десятом знаке после запятой.

Помимо этого, корень применялся, если нужно было найти сторону треугольника, при условии, что две другие известны. Ну и при решении квадратных уравнений от извлечения корня никуда не деться.

Наравне с вавилонскими работами объект статьи изучался и в китайской работе "Математика в девяти книгах", а древние греки пришли к выводу, что любое число, из которого не извлекается корень без остатка, дает иррациональный результат.

Происхождение данного термина связывают с арабским представлением числа: древние ученые полагали, что квадрат произвольного числа произрастает из корня, подобно растению. На латыни это слово звучит как radix (можно проследить закономерность - все, что имеет под собой "корневую" смысловую нагрузку, созвучно, будь то редис или радикулит).

Ученые последующих поколений подхватили эту мысль, обозначая его как Rx. Например, в XV веке, дабы указать, что извлекается корень квадратный из произвольного числа a, писали R 2 a. Привычная современному взгляду "галочка" √ появилась лишь в XVII веке благодаря Рене Декарту.

Наши дни

С точки зрения математики, квадратный корень из числа y - это такое число z, квадрат которого равен y. Иными словами, z 2 =y равносильно √y=z. Однако данное определение актуально лишь для арифметического корня, так как оно подразумевает неотрицательное значение выражения. Иными словами, √y=z, где z больше либо равно 0.

В общем случае, что действует для определения алгебраического корня, значение выражения может быть как положительным, так и отрицательным. Таким образом, в силу того, что z 2 =y и (-z) 2 =y, имеем: √y=±z или √y=|z|.

Благодаря тому, что любовь к математике с развитием науки лишь возросла, существуют разнообразные проявления привязанности к ней, не выраженные в сухих вычислениях. Например, наравне с такими занятными явлениями, как день числа Пи, отмечаются и праздники корня квадратного. Отмечаются они девять раз в сто лет, и определяются по следующему принципу: числа, которые обозначают по порядку день и месяц, должна быть корнем квадратным из года. Так, в следующий раз предстоит отмечать сей праздник 4 апреля 2016 года.

Свойства квадратного корня на поле R

Практически все математические выражения имеют под собой геометрическую основу, не миновала эта участь и √y, который определяется как сторона квадрата с площадью y.

Как найти корень числа?

Алгоритмов вычисления существует несколько. Наиболее простым, но при этом достаточно громоздким, является обычный арифметический подсчет, который заключается в следующем:

1) из числа, корень которого нам нужен, по очереди вычитаются нечетные числа - до тех пор, пока остаток на выходе не получится меньше вычитаемого или вообще будет равен нулю. Количество ходов и станет в итоге искомым числом. Например, вычисление квадратного корня из 25:

Следующее нечетное число - это 11, остаток у нас следующий: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

Для таких случаев существует разложение в ряд Тейлора:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , где n принимает значения от 0 до

+∞, а |y|≤1.

Графическое изображение функции z=√y

Рассмотрим элементарную функцию z=√y на поле вещественных чисел R, где y больше либо равен нулю. График ее выглядит следующим образом:

Кривая растет из начала координат и обязательно пересекает точку (1; 1).

Свойства функции z=√y на поле действительных чисел R

1. Область определения рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль включен).

2. Область значений рассматриваемой функции - промежуток от нуля до плюс бесконечности (ноль опять же включен).

3. Минимальное значение (0) функция принимает лишь в точке (0; 0). Максимальное значение отсутствует.

4. Функция z=√y ни четная, ни нечетная.

5. Функция z=√y не является периодической.

6. Точка пересечения графика функции z=√y с осями координат лишь одна: (0; 0).

7. Точка пересечения графика функции z=√y также является и нулем этой функции.

8. Функция z=√y непрерывно растет.

9. Функция z=√y принимает лишь положительные значения, следовательно, график ее занимает первый координатный угол.

Варианты изображения функции z=√y

В математике для облегчения вычислений сложных выражений порой используют степенную форму написания корня квадратного: √y=y 1/2 . Такой вариант удобен, например, в возведении функции в степень: (√y) 4 =(y 1/2) 4 =y 2 . Этот метод является удачным представлением и при дифференцировании с интегрированием, так как благодаря ему корень квадратный представляется обычной степенной функцией.

А в программировании заменой символа √ является комбинация букв sqrt.

Стоит отметить, что в данной области квадратный корень очень востребован, так как входит в состав большинства геометрических формул, необходимых для вычислений. Сам алгоритм подсчета достаточно сложен и строится на рекурсии (функции, что вызывает сама себя).

Корень квадратный в комплексном поле С

По большому счету именно предмет данной статьи стимулировал открытие поля комплексных чисел C, так как математикам не давал покоя вопрос получения корня четной степени из отрицательного числа. Так появилась мнимая единица i, которая характеризуется очень интересным свойством: ее квадратом есть -1. Благодаря этому квадратные уравнения и при отрицательном дискриминанте получили решение. В С для корня квадратного актуальны те же свойства, что и в R, единственное, сняты ограничения с подкоренного выражения.

Для вычисления квадратного корня без калькулятора существует несколько методов.

Как найти корень из числа – 1 способ

  • Один из методов заключается в разложении на множители того числа, которое находится под корнем. Эти составляющие в результате умножения образуют подкоренное значение. Точность полученного результата зависит от числа под корнем.
  • Например, если взять число 1 600 и начать раскладывать его на множители, то рассуждение построится таким образом: данное число кратно 100, значит, его можно разделить на 25; так как корень из числа 25 извлекается, то число является квадратным и подходит для дальнейших вычислений; при делении получаем еще одно число – 64. Это число тоже квадратное, поэтому корень извлекается хорошо; после этих расчетов под корнем можно записать число 1600 в виде произведения 25 и 64.
  • Одно из правил извлечения корня гласит, что корень из произведения множителей равен числу, которое получается при умножении корней из каждого множителя. Это значит, что: √(25*64) = √25 * √64. Если из 25 и 64 извлечь корни, то получим такое выражение: 5 * 8 = 40. То есть, квадратный корень из числа 1600 равен 40.
  • Но бывает так, что число, находящееся под корнем, не раскладывается на два множителя, из которых извлекается целый корень. Обычно такое можно осуществить только для одного из множителей. Поэтому чаще всего найти абсолютно точный ответ в таком уравнении не получается.
  • В таком случае можно высчитать только приблизительное значение. Поэтому нужно извлечь корень из множителя, который является квадратным числом. Это значение затем умножить на корень из второго числа, которое не является квадратным членом уравнения.
  • Выглядит это таким образом, например, возьмем число 320. Его можно разложить на 64 и 5. Из 64 целый корень извлечь можно, а из 5 – нет. Поэтому, выражение будет выглядеть так: √320 = √(64*5) = √64*√5 = 8√5.
  • Если есть необходимость, то можно найти приблизительное значение этого результата, вычислив
    √5 ≈ 2,236, следовательно, √320 = 8 * 2,236 = 17,88 ≈ 18.
  • Также число под корнем можно разложить на несколько простых множителей, а одинаковые можно вынести из-под него. Пример: √75 = √(5*5*3) = 5√3 ≈ 8,66 ≈ 9.

Как найти корень из числа – 2 способ

  • Другой способ заключается в делении в столбик. Деление происходит аналогично, но только искать нужно квадратные числа, из которых потом извлекать корень.
  • В этом случае квадратное число пишем сверху и отнимаем его в левой части, а извлеченный корень снизу.
  • Теперь второе значение нужно удвоить и записать снизу справа в виде: число_х_=. Пропуски необходимо заполнить числом, которое будет меньше или равно необходимому значению слева – все как в обычном делении.
  • При необходимости этот результат снова вычитается слева. Такие вычисления продолжаются до тех пор, пока результат не будет достигнут. Нули также можно добавлять, пока не получите нужное количество знаков после запятой.

Как извлечь корень из числа. В этой статье мы будем учиться извлекать квадратный корень из четырехзначных и пятизначных чисел.

Давайте, для примера, извлечем квадратный корень из числа 1936.

Следовательно, .

Последняя цифра в числе 1936 - цифра 6. На 6 заканчивается квадрат числа 4 и числа 6. Следовательно, 1936 может быть квадратом числа 44 или числа 46. Осталось проверить с помощью умножения.

Значит,

Извлечем квадратный корень из числа 15129.

Следовательно, .

Последняя цифра в числе 15129 - цифра 9. На 9 заканчивается квадрат числа 3 и числа 7. Следовательно, 15129 может быть квадратом числа 123 или числа 127. Проверим с помощью умножения.

Значит,

Как извлечь корень - видео

А теперь предлагаю вам посмотреть видео Анны Денисовой - "Как извлечь корень ", автора сайта " Простая физика ", в котором она рассказывает, как извлекать квадратные и кубические корни без калькулятора.

В видео рассматривается несколько способов извлечения корней:

1. Самый простой способ извлечения квадратного корня.

2. Подбором, используя квадрат суммы.

3. Вавилонский способ.

4. Способ извлечения квадратного корня в столбик.

5. Быстрый способ извлечения кубического корня.

6. Способ извлечения кубического корня в столбик.

Глава первая.

Извлечение из данного целого числа наибольшего целого квадратного корня.

170. Предварительные замечания.

а) Так как мы будем говорить об извлечении только квадратного корня, то для сокращения речи в этой главе мы вместо „квадратный" корень будем говорить просто „корень".

б) Если возвысим в квадрат числа натурального ряда: 1,2,3,4,5 . . . , то получим такую таблицу квадратов: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,121,144. .,

Очевидно, имеется очень многo целых чисел, которые в этой таблице не находятся; из таких чисел, конечно, нельзя извлечь целый корень. Поэтому, если требуется извлечь корень из какого-нибудь целого числа, напр. требуется найти √4082 , то мы условимся это требование понимать так: извлечь целый корень из 4082, если это возможно; если же нельзя, то мы должны найти наибольшее целое число, квадрат которого заключается в 4082 (такое число есть 63, так как 63 2 = 39б9, а 64 2 = 4090).

в) Если данное число меньше 100, то корень из него находится по таблице умножения; так, √60 будет 7, так как семью 7 равно 49, что меньше 60, а восемью 8 составляет 64, что больше 60.

171. Извлечение корня из числа, меньшего 10000, но большего 100. Пусть надо найти √4082 . Так как это число меньше 10 000, то корень из него меньше √l0 000 = 100. С другой стороны, данное число больше 100; значит, корень из него больше (или равен 10) . (Если бы, напр., требовалось найти √ 120 , то хотя число 120 > 100, однако √ 120 равен 10, т.к. 11 2 = 121.) Но всякое число, которое больше 10, но меньше 100, имеет 2 цифры; значит, искомый корень есть сумма:

десятки + единицы,

и поэтому квадрат его должен равняться сумме:

Сумма эта должна быть наибольшим квадратом, заключающимся в 4082.

Возьмем из них наибольший, 36, и допустим,что квадрат десятков корня будет равен именно этому наибольшему квадрату. Тогда число десятков в корне должно быть 6. Проверим теперь, что это всегда должно быть так, т. е. всегда число десятков корня равно наибольшему целому корню из числа сотен подкоренного числа.

Действительно, в нашем примере число десятков корня не может быть больше 6, так как (7 дес.) 2 = 49 сотен, что превосходит 4082. Но оно не может быть и меньше 6, так как 5 дес. (с единицами) меньше 6 дес, а между тем (6 дес.) 2 = 36 сотен, что меньше 4082. А так как мы ищем наибольший целый корень, то мы не должны брать для корня 5 дес, когда и 6 десятков оказывается не много.

Итак, мы нашли число десятков корня, именно 6. Пишем эту цифру направо от знака =, запомнив, что она означает десятки корня. Возвысив ее в квадрат, получим 36 сотен. Вычитаем эти 36 сотен из 40 сотен подкоренного числа и сносим две остальные цифры данного числа. В остатке 482 должны содержаться 2 (6 дес.) (ед.) + (ед.)2. Произведение (6 дес.) (ед.) должно составлять десятки; поэтому удвоенное произведение десятков на единицы надо искать в десятках остатка, т. е. в 48 (мы получим число их, отделив в остатке 48"2 одну цифру справа). Удвоенные десятки корня составляют 12. Значит, если 12 умножим на единицы корня (которые пока неизвестны), то мы должны получить число, содержащееся в 48. Поэтому мы разделим 48 на 12.

Для этого налево от остатка проводим вертикальную черту и за нею (отступив от черты на одно место влево для цели, которая сейчас обнаружится) напишем удвоенную первую цифру корня, т. е. 12, и на нее разделим 48. В частном получим 4.

Однако, заранее нельзя ручаться, что цифру 4 можно принять за единицы корня, так как мы сейчас разделили на 12 все число десятков остатка, тогда как некоторая часть из них может и не принадлежать удвоенному произведению десятков на единицы, а входит в состав квадрата единиц. Поэтому цифра 4 может оказаться велика. Надо ее испытать . Она, очевидно, годится в том случае, если сумма 2 (6 дес.) 4 + 4 2 окажется не больше остатка 482.

В результате получаем сразу сумму того и другого. Полученное произведение оказалось 496, что больше остатка 482; значит, цифра 4 велика. Тогда испытаем таким же образом следующую меньшую цифру 3.

Примеры.

В примере 4-м при делении 47 десятков остатка на 4, мы получаем в частном 11. Но так как цифра единиц корня не может быть двузначным числом 11 или 10, то надо прямо испытать цифру 9.

В примере 5-м после вычитания из первой грани квадрата 8 остаток оказывается 0, и следующая грань тоже состоит из нулей. Это показывает, что искомый корень состоит только из 8 десятков, и потому на место единиц надо поставить нуль.

172. Извлечение корня из числа, большего 10000 . Пусть требуется найти √35782 . Так как подкоренное число превосходит 10 000, то корень из него больше √10000 = 100 и, следовательно, он состоит из 3 цифр или более. Из скольких бы цифр он ни состоял, мы можем его всегда рассматривать как сумму только десятков и единиц. Если, напр., корень оказался бы 482, то мы можем его считать за сумму 48 дес. + 2 ед. Тогда квадрат корня будет состоять из 3 слагаемых:

(дес.) 2 + 2 (дес.) (ед.) + (ед.) 2 .

Теперь мы можем рассуждать совершенно так же, как и при нахождении √4082 (в предыдущем параграфе). Разница будет только та, что для нахождения десятков корня из 4082 мы должны были извлечь корень из 40, и это можно было сделать по таблице умножения; теперь же для получения десятков√35782 нам придется извлечь корень из 357, что по таблице умножения нельзя выполнить. Но мы можем найти√357 тем приемом, который был описан в предыдущем параграфе, так как число 357 < 10 000. Наибольший целый корень из 357 оказывается 18. Значит, в √3"57"82 должно быть 18 десятков. Чтобы найти единицы, надо из 3"57"82 вычесть квадрат 18 десятков, для чего достаточно вычесть квадрат 18 из 357 сотен и к остатку снести 2 последние цифры подкоренного числа. Остаток от вычитания квадpaта 18 из 357 у нас уже есть: это 33. Значит, для получения остатка от вычитания квадрата 18 дес. из 3"57"82, достаточно к 33 приписать справа цифры 82.

Далее поступаем так, как мы поступали при нахождении √4082 , a именно: налево от остатка 3382 проводим вертикальную черту и за нею пишем (отступив от черты на одно место) удвоенное число найденных десятков корня, т. е. 36 (дважды 18). В остатке отделяем одну цифру справа и делим число десятков остатка, т. е. 338, на 36. В частном получаем 9. Эту цифру испытываем, для чего ее приписываем к 36 справа и на нее же умножаем. Произведение оказалось 3321, что меньше остатка. Значит, цифра 9 годится, пишем ее в корне.

Вообще, чтобы извлечь квадратный корень из какого угодно целого числа, надо сначала извлечь корень из числа его сотен; если это число более 100, то придется искать корень из числа сотен этих сотен, т. е. из десятков тысяч данного числа; если и это число более 100, придется извлекать корень из числа сотен десятков тысяч, т. е. из миллионов данного числа, и т. д.

Примеры.

В последнем примере, найдя первую цифру и вычтя квадрат ее, получаем в остатке 0. Сносим следующие 2 цифры 51. Отделив десятки, мы получаем 5 дес, тогда как удвоенная найденная цифра корня есть 6. Значит, от деления 5 на 6 мы получаем 0. Ставим в корне 0 на втором месте и к остатку сносим следующие 2 цифры; получаем 5110. Далее продолжаем как обыкновенно.

В этом примере искомый корень состоит только из 9 сотен, и потому на месте десятков и на месте единиц надо поставить нули.

Правило. Чтобы, извлечь квадратный корень из данною целого числа, разбивают его, от правой руки к левой, на грани, по 2 цифры в каждой, кроме последней, в которой может быть и одна цифра.
Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани.
Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.
Испытание это производится так: за вертикальной чертой (налево от остатка) пишут удвоенное ранее найденное число корня и к нему, с правой стороны, приписывают испытуемую цифру, получившееся, после этой приписки число умножают на испытуемую цифру. Если после умножения получится число, большее остатка, то испытуемая цифра не годится и надо испытать следующую меньшую цифру.
Следующие, цифры корня находятся по тому же приему.

Если после снесения грани число десятков получившегося числа окажется меньше делителя, т. е. меньше удвоенной найденной части корня, то в корне ставят 0, сносят следующую грань и продолжают действие дальше.

173. Число цифр корня. Из рассмотрения процесса нахождения корня следует, что в корне столько цифр, сколько в подкоренном числе заключается граней по 2 цифры каждая (в левой грани может быть и одна цифра).

Глава вторая.

Извлечение приближенных квадратных корней из целых и дробных чисел .

Извлечение квадратного корня из многочленов см. в дополнениях ко 2-й части § 399 и след.

174. Признаки точного квадратного корня. Точным квадратным корнем из данного числа называется такое число, квадрат которого в точности равняется данному числу. Укажем некоторые признаки, по которым можно судить, извлекается ли из данного числа точный корень, или нет:

а) Если из данного целого числа не извлекается точный целый корень (получается при извлечении остаток), то из такого числа нельзя найти и дробный точный корень, так как всякая дробь, не равная целому числу, будучи умножена сама на себя, дает в произведении тоже дробь, а не целое число.

б) Так как корень из дроби равен корню из числителя, деленному на корень из знаменателя, то точный корень из несократимой дроби не может быть найден в том случае, если его нельзя извлечь из числителя или из знаменателя. Напр, из дробей 4 / 5 , 8 / 9 и 11 / 15 нельзя извлечь точный корень, так как в первой дроби нельзя его извлечь из знаменателя, во второй - из числителя и в третьей - ни из числителя, ни из знаменателя.

Из таких чисел, из которых нельзя извлечь точный корень, можно извлекать лишь приближенные корни.

175. Приближенный корень с точностью до 1 . Приближенным квадратным корнем с точностью до 1 из данного числа (целого или дробного - все равно) называется такое целое число, которое удовлетворяет следующим двум требованиям:

1) квадрат этого числа не больше данного числа; 2) но квадрат этого числа увеличенного на 1, больше данного числа. Другими словами, приближенным квадратным корнем с точностью до 1 называется наибольший целый квадратный корень из данного числа, т. е.тот корень, который мы научились находить в предыдущей главе. Корень этот называется приближенным с точностью до 1, потому что для получения точного корня к этому приближенному корню надо было бы добавить еще некоторую дробь, меньшую 1, так что если вместо неизвестного точного корня мы возьмем этот приближенный, то сделаем ошибку, меньшую 1.

Правило. Чтобы извлечь приближенный квадратный корень с точностью до 1, надо извлечь наибольший целый корень из целой части данного числа.

Найденное по этому правилу число есть приближенный корень с недостатком , так как в нем недостает до точного корня некоторой дроби (меньшей 1). Если этот корень увеличим на 1, то получим другое число, в котором есть некоторый избыток над точным корнем, и избыток этот меньше 1. Этот увеличенный на 1 корень можно назвать тоже приближенным корнем с точностью до 1, но с избытком. (Названия: „с недостатком" или „с избытком" в некоторых математических книгах заменены другими равносильными: „по недостатку" или „по избытку".)

176. Приближенный корень с точностью до 1 / 10 . Пусть требуется найти √2,35104 с точностью до 1 / 10 . Это значит, что требуется найти такую десятичную дробь, которая состояла бы из целых единиц и десятых долей и которая удовлетворяла бы двум следующим требованиям:

1) квадрат этой дроби не превосходит 2,35104, но 2) если увеличим ее на 1 / 10 , то квадрат этой увеличенной дроби превосходит 2,35104.

Чтобы найти такую дробь, мы сначала нaйдем приближенный корень с точностью до 1, т. е. извлечем корень только из целого числа 2. Получим 1 (и в остатке 1). Пишем в корне цифру1 и ставим после нее запятую. Теперь будем искать цифру десятых. Для этого сносим к остатку 1 цифры 35, стоящие направо от запятой, и продолжаем извлечениетак, как будто мы извлекали корень из целого числа 235. Полученную цифру 5 пишем в корне на месте десятых. Остальные цифры подкоренного числа (104) нам не нужны. Что полученное число 1,5 будет действительно приближенный корень с точностью до 1 / 10 видно из следующего. Если бы мы находили наибольший целый корень из 235 с точностью до 1, то получили бы 15. Значит:

15 2 < 235, но 16 2 >235.

Разделив все эти числа на 100, получим:

Значит, число 1,5 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 10 .

Найдем еще этим приемом следующие приближенные корни с точностью до 0,1:

177. Приближенный квадратный корень с точностью до 1 / 100 до 1 / 1000 и т. д.

Пусть требуется найти с точностью до 1 / 100 приближенный √248 . Это значит: найти такую десятичную дробь, которая состояла бы из целых, десятых и сотых долей и которая удовлетворяла бы двум требованиям:

1) квадрат ее не превосходит 248, но 2) если увеличим эту дробь на 1 / 100 то квадрат этой увеличенной дроби превосходит 248.

Такую дробь мы найдем в такой последовательности: сначала отыщем целое число, потом цифру десятых, затем и цифру сотых. Корень из целого числа будет 15 целых. Чтобы получить цифру десятых, надо как мы видели, снести к остатку 23 еще 2 цифры, стоящие направо от запятой. В нашем примере этих цифр нет вовсе, ставим на их место нули. Приписав их к остатку и продолжая действие так, как будто находим корень из целого числа 24 800, мы найдем цифру десятых 7. Остается найти цифру сотых. Для этого приписываем к остатку 151 еще 2 нуля и продолжаем извлечение, как будто мы находим корень из целого числа 2 480 000. Получаем 15,74. Что это число действительно есть приближенный корень из 248 с точностью до 1 / 100 видно из следующего. Если бы мы находили наибольший целый квадратный корень из целого числа 2 480 000, то получили бы 1574; значит:

1574 2 < 2 480 000, но 1575 2 > 2 480 000.

Разделив все числа на 10 000 (= 100 2), получим:

Значит, 15,74 есть та десятичная дробь, которую мы назвали приближенным корнем с точностью до 1 / 100 из 248.

Применяя этот прием к нахождению приближенного корня с точностью до 1 / 1000 до 1 / 10000 и т. д. найдем следующее.

Правило. Чтобы извлечь из данного целою числа или из данной десятичной дроби приближенный корень с точностью до 1 / 10 до 1 / 100 до 1 / 100 и т. д., находят сначала приближенный корень с точностью до 1, извлекая корень из целого числа (если его нет, пишут о корне 0 целых).

Потом находят цифру десятых. Для этого к остатку сносят,2 цифры подкоренного числа, стоящие направо от запятой (если их нет, приписывают к остатку два нуля), и продолжают извлечение так, как это делается при извлечении корня из целого числа. Полученную цифру пишут в корне на месте десятых.

Затем находят цифру сотых. Для этого к остатку сносят снова две цифры, стоящие направо от тех, которые были только что снесены, и т. д.

Таким образом, при извлечении корня из целого числа с десятичной дробью, надо делить на грани по 2 цифры в каждой, начиная от запятой, как влево (в целой части числа), так и вправо, (в дробной части).

Примеры.

1) Найти до 1 / 100 корни: а) √2 ; б) √0,3 ;

В последнем примере мы обратили дробь 3 / 7 в десятичную, вычислив 8 десятичных знаков, чтобы образовались 4 грани, потребные для нахождения 4 десятичных знаков корня.

178. Описание таблицы квадратных корней. В конце этой книги приложена таблица квадратных корней, вычисленных с четырьмя цифрами. По этой таблице можно быстро находить квадратный корень из целого числа (или десятичной дроби), которое выражено не более, чем четырьмя цифрами. Прежде чем объяснить, как эта таблица устроена, заметим, что первую значащую цифру искомого корня мы всегда можем найти без помощи таблиц по одному взгляду на подкоренное число; мы легко также определим, какой десятичный разряд означает первая цифра корня и, следовательно, где в корне, когда найдем его цифры, надо поставить запятую. Приведем несколько примеров:

1) √5"27,3 . Первая цифра будет 2, так как левая грань подкоренного числа есть 5; а корень из 5 равен 2. Кроме того, так как в целой части подкоренного числа всех граней только 2, то в целой части искомого корня должно быть 2 цифры и, следовательно, первая его цифра 2 должна означать десятки.

2) √9,041 . Очевидно, в этом корне первая цифра будет 3 простые единицы .

3) √0,00"83"4 . Первая значащая цифра есть 9, так как грань, из которой пришлось бы извлекать корень для получения первой значащей цифры, есть 83, а корень из 83 равен 9. Так как в искомом числе не будет ни целых, ни десятых, то первая цифра 9 должна означать сотые.

4) √0,73"85 . Первая значащая цифра есть 8 десятых .

5) √0,00"00"35"7 . Первая значащая цифра будет 5 тысячных .

Сделаем еще одно замечание. Положим, что требуется извлечь корень из такого числа, которое, после отбрасывания в нем занятой, изображается рядом таких цифр: 5681. Корень этот может быть один из слелуюших:

Если возьмем корни, подчеркнутые нами одной чертою, то все они будут выражены одним и тем же рядом цифр, именно теми цифрами, которые получаются при извлечении корня из 5681 (это будут цифры 7, 5, 3, 7). Причина этому та, что грани, на которые приходится разбивать подкоренное число при нахождении цифр корня, будут во всех этих примерах одни и те же, поэтому и цифры для каждого корня окажутся одинаковые (только положение запятой будет, конечно, различное). Точно так же во всех корнях, подчеркнутых нами двумя чертами, должны получиться одинаковые цифры, именно те, которыми выражается √568,1 (эти цифры будут 2, 3, 8, 3), и по той же причине. Таким образом, цифры корней из чисел, изображаемых (по отбрасывании запятой) одним и тем же рядом цифр 5681, будут двоякого (и только двоякого) рода: либо это ряд 7, 5, 3, 7, либо ряд 2, 3, 8, 3. То же самое, очевидно, может быть сказано о всяком другом ряде цифр. Поэтому, как мы сейчас увидим, в таблице каждому ряду цифр подкоренного числа соответствуют 2 ряда цифр для корней.

Теперь мы можем объяснить устройство таблицы и способ ее пользования. Для ясности объяснения мы изобразили здесь начало первой страницы таблицы.

Таблица эта расположена на нескольких страницах. На каждой из них в первой слева колонке помещены числа 10, 11, 12... (до 99). Эти числа выражают первые 2 цифры числа, из которого ищется квадратный корень. В верхней горизонтальной строчке (а также и в нижней) размещены числа: 0, 1, 2, 3... 9, представляющие собою 3-ю цифру данного числа, а затем далее направо помещены цифры 1, 2, 3 . . . 9, представляющие собою4-ю цифру данного числа. Во всех других горизонтальных строчках помещены по 2 четырехзначных числа, выражающие квадратные корни из соответствующих чисел.

Пусть требуется найти квадратный корень из какого-нибудь числа, целого или выраженного десятичною дробью. Прежде всего находим без помощи таблиц первую цифру корня и ее разряд. Затем отбросим в данном числе запятую, если она есть. Положим сначала, что после отбрасывания запятой останутся только 3 цифры, напр. 114. Находим в таблицах в левой крайней колонке первые 2 цифры, т. е. 11, и продвигаемся от них направо по горизонтальной строке до тех пор, пока не дойдем до вертикальной колонки, наверху (и внизу) которой стоит 3-я цифра числа, т. е. 4. В этом месте мы находим два четырехзначных числа: 1068 и 3376. Которое из этих двух чисел надо взять и где поставить в нем запятую, это определяется первою цифрою корня и ее разрядом, которые мы нашли раньше. Так, если надо найти √0,11"4 , то первая цифра корня есть 3 десятых, и потому мы должны взять для корня 0,3376. Если бы требовалось найти √1,14 , то первая цифра корня была бы 1, и мы взяли бы тогда 1,068.

Таким образом мы легко найдем:

√5,30 = 2,302; √7"18 = 26,80; √0,91"6 = 0,9571 и т.п.

Положим теперь, что требуется найти корень из числа, выраженного (по отбрасывании запятой) 4 цифрами, напр.√7"45,6 . Заметив, что первая цифра корня есть 2 десятка, находим для числа 745 так, как сейчас было объяснено, цифры 2729 (это число только замечаем пальцем, но его не записываем). Потом продвигаемся от этого числа еще направо до тех пор, пока в правой части таблицы (за последнею жирною чертою) не встретим ту вертикальную колонку, которая отмечена наверху (и внизу) 4-й цифрой данного числа, т. е. цифрой 6, и находим там число 1. Это будет поправка, которую надо приложить (в уме) к ранее найденному числу 2729; получим 2730. Это число записываем и ставим в нем запятую на надлежащем месте: 27,30.

Таким путем найдем, напр:

√44,37 = 6,661; √4,437 = 2,107; √0,04"437 =0,2107 и т.д.

Если подкоренное число выражается только одной или двумя цифрами, то мы можем предположить, что после этих цифр стоит один или два нуля, и затем поступать так, как было объяснено для трехзначного числа. Напр.√2,7 =√2,70 =1,643; √0,13 = √0,13"0 = 0,3606 и т.п..

Наконец, если подкоренное число выражено более, чем 4 цифрами, то из них мы возьмем только первые 4, а остальные отбросим, причем для уменьшения ошибки, если первая из отбрасцваемых цифр есть 5 или более 5, то мы увеличим на l четвертую из удержанных цифр. Так:

√357,8| 3 | = 18,91; √0,49"35|7 | = 0,7025; и т.п.

Замечание. В таблицах указан приближенный квадратный корень иногда с недостатком, иногда же с избытком, а именно тот из этих приближенных корней, который ближе подходит к точному корню.

179. Извлечение квадратных корней из обыкновенных дробей. Точный квадратный корень из несократимой дроби можно извлечь лишь тогда, когда оба члена дроби точные квадраты . В этом случае достаточно извлечь корень из числителя и знаменателя отдельно, напр.:

Приближенный квадратный корень из обыкновенной дроби c какою-нибудь десятичною точностью проще всего можно находить, если предварительно обратим обыкновенную дробь в десятичную, вычислив в этой дроби такое число десятичных знаков после запятой, которое было бы вдвое больше числа десятичных знаков в искомом корне.

Впрочем можно поступать и иначе. Объясним это на следующем примере:

Найти приближенный √ 5 / 24

Сделаем знаменатель точным квадратом. Для этого достаточно было бы умножить оба члена дроби на знаменатель 24; но в этом примере можно поступить иначе. Разложим 24 на простые множители: 24 = 2 2 2 3. Из этого разложения видно, что если 24 умножить на 2 и еще на 3, то тогда в произведении каждый простой множитель будет повторяться четное число раз, и, следовательно, знаменатель сделается квадратом:

Остается вычислить √30 с какой-нибудь точностью и результат разделить на 12. При этом надо иметь в виду, что от деления на 12 уменьшится и дробь, показывающая степень точности. Так, если найдем √30 с точностью до 1 / 10 и результат разделим на 12, то получим приближенный корень из дроби 5 / 24 с точностью до 1 / 120 (а именно 54 / 120 и 55 / 120)

Глава третья.

График функции х = √ y .

180. Обратная функция. Пусть дано какое-нибудь уравнение, определяющее у как функцию от х , напр, такое: у = х 2 . Мы можем сказать, что оно определяет не только у как функцию от х , но и, обратно, определяет х как функцию от у , хотя и неявным образом. Чтобы сделать эту функцию явной, надо решить данное уравнение относительно х , принимая у за известное число; так, из взятого нами уравнения находим: у = х 2 .

Алгебраическое выражение, полученное для x после решения уравнения, определяющего у как функцию от x, называется функцией, обратной той, которая определяет у.

Значит, функция, х = √ y обратна функции у = х 2 . Если, как это принято, независимое переменное обозначим х , а зависимое у , то полученную сейчас обратную функцию можем выразить так: y = √ x . Таким образом, чтобы получить функцию, обратную данной (прямой), надо из уравнения, определяющего эту данную функцию, вывести х в зависимости от y и в полученном выражении заменить y на x , а х на y .

181. График функции y = √ x . Функция эта невозможна при отрицательном значении х , но ее возможно вычислить (с любою точностью) при всяком положительном значении x , причем для каждого такого значения функция получает два различных значения с одинаковой абсолютной величиной, но с противоположными знаками. Если знаком будем обозначать только арифметическое значение квадратного корня, то эти два значения функции можем выразить так: y = ± √ x Для построения графика этой функции надо предварительно составить таблицу ее значений. Всего проще эту таблицу составить из таблицы значений прямой функции:

у = х 2 .

x

y

если значения у примем за значения х , и наоборот:

y = ± √ x

Нанеся все эти значения на чертеже, получим следующий график.

На том же чертеже мы изобразили (прерывистой линией) и график прямой функции у = х 2 . Сравним эти два графика между собою.

182. Соотношение между графиками прямой и обратной функций. Для составления таблицы значений обратной функции y = ± √ x мы брали для х те числа, которые в таблице прямой функции у = х 2 служили значениями для у , а для у брали те числа; которые в этой таблице были значениями для x . Из этого следует, что оба графика одинаковы, только график прямой функции так расположен относительно оси у - ов, как график обратной функции расположен относительно оси х - ов. Вследствие этого, если мы перегнем чертеж вокруг прямой ОА , делящей пополам прямой угол xОу , так, чтобы часть чертежа, содержащая полуось Оу , упала на ту часть, которая содержит полуось Ох , то Оу совместится с Ох , все деления Оу совпадут c делениями Ох , и точки параболы у = х 2 совместятся с соответствующими точками графика y = ± √ x . Напр, точки М и N , у которых ордината 4 , а абсциссы 2 и -2 , совпадут с точками М" и N" , у которых абсцисса 4 , а ординаты 2 и -2 . Если же эти точки совпадут, то это значит, что прямые ММ" и NN" перпендикулярны к ОА и делятся этою прямою пополам. То же самое можно сказать о всех других соответствующих точках обоих графиков.

Таким образом, график обратной функции должен быть такой же, как и грaфик прямой функции, но расположены эти графики различно, а именно симметрично друг с другом относительно биссектрисы угла хОу . Можно сказать, что график обратной функции есть отображение (как в зеркале) графика прямой функции относительно биссектрисы угла хОу .

Инструкция

Подберите подкоренному числу такой множитель, вынесение которого из под корня действительно выражение - иначе операция потеряет . Например, если под знаком корня с показателем, равным трем (кубический корень), стоит число 128, то из под знака можно вынести, например, число 5. При этом подкоренное число 128 придется разделить на 5 в кубе: ³√128 = 5∗³√(128/5³) = 5∗³√(128/125) = 5∗³√1.024. Если наличие дробного числа под знаком корня не противоречит условиям задачи, то можно в таком виде. Если же нужен более простой вариант, то сначала разбейте подкоренное выражение на такие целочисленные множители, кубический корень одного из которых будет являться целым число м. Например: ³√128 = ³√(64∗2) = ³√(4³∗2) = 4∗³√2.

Используйте для подбора множителей подкоренного числа , если вычислять в уме степени числа не представляется возможным. Особенно это актуально к корня м с показателем степени больше двух. Если есть доступ в интернет, то можно производить вычисления встроенными в поисковые системы Google и Nigma вычислителями. Например, если надо найти наибольший целочисленный множитель, который можно вынести из под знака кубического корня для числа 250, то перейдя на сайт Google введите запрос «6^3», чтобы проверить, нельзя ли вынести из под знака корня шестерку. Поисковик покажет результат, равный 216. Увы, 250 нельзя разделить без остатка на это число . Тогда введите запрос 5^3. Результатом будет 125, а это позволяет разбить 250 на множители 125 и 2, а значит вынести из под знака корня число 5, оставив там число 2.

Источники:

Вынести из-под корня один из сомножителей необходимо в ситуациях, когда нужно упростить математическое выражение. Бывают случаи, когда выполнить нужные вычисления с помощью калькулятора невозможно. Например, если вместо чисел используются буквенные обозначения переменных.

Инструкция

Разложите подкоренное выражение на простые сомножители. Посмотрите, какой из сомножителей повторяется столько же раз, указано в показателей корня , или больше. Например, вам нужно извлечь корень из числа а в четвертой степени. В этом случае число можно представить как а*а*а*а = а*(а*а*а)=а*а3. Показателю корня в этом случае будет соответствовать сомножитель а3. Его и нужно вынести за знак .

Извлеките корень получившихся подкоренных в отдельности там, где это возможно. Извлечение корня представляет собой алгебраическое действие, обратное возведению в степень. Извлечение корня произвольной степени из числа найти такое число, которое при возведении его в эту произвольную степень даст в результате данное число. Если извлечение корня произвести нельзя, оставьте подкоренное выражение под знаком корня так, как оно есть. В результате проведения перечисленных действий вы произведете вынесение из-под знака корня .

Видео по теме

Обратите внимание

Будьте внимательны при записи подкоренного выражения в виде сомножителей – ошибка на этом этапе приведёт к неправильным результатам.

Полезный совет

При извлечении корней удобно пользоваться специальными таблицами или таблицами логарифмических корней – этим вы значительно сократите время на нахождение правильного решения.

Источники:

  • знак извлечения корня в 2019

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .

Инструкция

Вынесение общего множителя за скобки – один из самых распространенных способов разложения . Этот прием применяется для упрощения структуры длинных алгебраических выражений, т.е. многочленов. Общим может быть число, одночлен или двучлен, а для его поиска применяется распределительное свойство умножения.

Число.Посмотрите внимательно на коэффициенты при каждом многочлена, можно ли разделить их на одно и то же число. Например, в выражении 12 z³ + 16 z² – 4 очевидным является множитель 4. После преобразования получится 4 (3 z³ + 4 z² - 1). Иными , это число является наименьшим общим целочисленным делителем всех коэффициентов.

Одночлен.Определите, ли одна и та же переменная в каждый из слагаемых многочлена. Предположим, что это так, теперь посмотрите на коэффициенты, как в предыдущем случае. Пример: 9 z^4 – 6 z³ + 15 z² – 3 z.

Каждый элемент этого многочлена содержит переменную z. Кроме того, все коэффициенты – числа, кратные 3. Следовательно, общим множителем будет одночлен 3 z:3 z (3 z³ – 2 z² + 5 z - 1).

Двучлен.За скобки общий множитель из двух , переменной и числа, которое является общего многочлена. Поэтому, если множитель -двучлен неочевиден, то нужно найти хотя бы один корень. Выделите свободный член многочлена, это коэффициент без переменной. Теперь примените метод подстановки в общее выражение всех целочисленных делителей свободного члена.

Рассмотрите : z^4 – 2 z³ + z² - 4 z + 4. Проверьте, не является ли какой-либо из целых делителей числа 4 z^4 – 2 z³ + z² - 4 z + 4 = 0. Путем простой подстановки найдите z1 = 1 и z2 = 2, значит, за скобки можно вынести двучлены (z - 1) и (z - 2). Для того, чтобы найти оставшееся выражение, воспользуйтесь последовательным делением в столбик.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции