19.07.2019

Из чего состоит микроскоп схема. Устройство микроскопа, строение микроскопа. Устройство электронных микроскопов


Микроскоп - это оптический прибор для изучения объектов, невидимых невооруженным глазом. В микроскопе (рис. 1) различают механическую и оптическую части. Механическая часть прибора состоит из ножки с присоединенным к ней тубусодержателем, на котором крепится тубус, окуляры и объективы (смена объективов осуществляется с помощью револьверного устройства), предметный столик и осветительный аппарат с зеркалом. Тубус присоединен к тубусодержателю подвижно, поднимается и опускается с помощью двух винтов: микрометрический винт служит для предварительной установки фокуса; микрометрический винт- для тонкой фокусировки. Предметный столик снабжен устройством, позволяющим передвигать препарат в разных направлениях в горизонтальной плоскости. Осветительный аппарат состоит из конденсора и диафрагмы, которые находятся между зеркалом и столиком.

Рис. 1. Биологический микроскоп:
1 - окуляры;
2 - бинокулярная насадка;
3 - головка для крепления револьвера с посадочным гнездом для смены тубусов;
4 - винт крепления бинокулярной насадки;
5 - револьвер на салазках;
6 - объектив;
7 - предметный столик;
8 и 9 - барашек продольного (8) и поперечного (9) движения препаратоводителя;
10 - апланатический конденсор прямого и косого освещения;
11 - центрировочные винты столика;
12 - зеркало;
13 - барашек микромеханизма;
14 -кронштейн конденсора;
15 - головка винта, фиксирующего верхнюю часть предметного столика;
16 - коробка с микромеханизмом;
17 - ножка;
18 - винт грубого движения;
19 - тубусодержатель.

С помощью диафрагмы регулируется интенсивность света, попадающего на конденсор. Конденсор можно передвигать в вертикальном направлении, изменяя интенсивность светового потока, попадающего в объектив. Объективы представляют собой системы взаимно центрированных линз, дающих обратное увеличенное изображение объекта. Увеличение объективов указано на оправе (Х10, Х20, Х40, Х90). Объективы бывают двух типов: сухие и иммерсионные (погружные). Иммерсионный объектив сначала опускают в иммерсионное масло с помощью макровинта под контролем глаза, а затем, манипулируя микровинтом, добиваются четкого изображения объекта. Окуляр представляет собой оптическую систему, увеличивающую изображение, полученное в объективе. Увеличения окуляра указаны на оправе (Х5 и т. д.). Общее увеличение микроскопа равняется произведению увеличения объектива на увеличение окуляра.


Рис. 2. Микроскоп МБИ-1 с осветителем ОИ-19.

С микроскопом можно работать при дневном и искусственном освещении, используя в качестве источника света специальный осветительный аппарат (рис. 2). При работе с конденсором используют плоское зеркало независимо от источника освещения. С вогнутым зеркалом работают без конденсора. При дневном свете конденсор поднимают до уровня предметного столика, при искусственном опускают до тех пор, пока источник света не появится в плоскости препарата. См. также Микроскопическая техника, Микроскопия.

В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.

Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.

Рисунок 1. Устройство микроскопа

К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании находится также гнездо для зеркала или встроенный осветитель.

  • предметный столик, служащий для размещения препаратов и горизонтальногоих перемещения;
  • узел для крепления и вертикального светофильтров.

В большинстве современных микроскопов фокусировка осуществляется путем вертикального перемещения предметного столика с помощью макро- и микромеханизма при неподвижном тубусодержателе. Это позволяет установить на тубусодержатель различные насадки (микрофото и т.п.). В некоторых конструкциях микроскопов, предназначенных для работы с микроманипулятором, фокусировка осуществляется вертикальным перемещением тубусодержателя при неподвижном предметном столике.

Тубус микроскопа - узел, служащий для установки объективов и окуляров на определенном расстоянии друг от друга. Он представляет собой трубку, в верхней части которой находится окуляр или окуляры, а в нижней - устройство для крепления и смены объективов. Обычно это револьвер с несколькими гнездами для быстрой смены объективов различного увеличения. В каждом гнезде револьвера объектив закреплен таким образом, что он всегда остается центрированным по отношению к оптической оси микроскопа. В настоящее время конструкция тубуса существенно отличается от прежних микроскопов тем, что части тубуса несущие окуляры и револьвер с объективами, конструктивно не связаны. Роль средней части тубуса может выполнять штатив.
Механическая длина тубуса биологических микроскопов обычно составляет 160мм. В тубусе между объективом и окуляром могут располагаться призмы, изменяющие направление хода лучей и промежуточные линзы, изменяющие окулярное увеличение и оптическую длину тубуса.

Существуют различные взаимозаменяемые конструкции участка тубуса, несущего окуляры (прямой и наклонный) и различающиеся по количеству окуляров (окулярные насадки):

  • монокулярные - с одним окуляром, для наблюдения одним глазом;
  • бинокулярные - с двумя окулярами, для одновременного наблюдения двумя глазами, которые могут различаться по конструкции в зависимости от модели микроскопа;
  • тринокулярные - с двумя окулярами и проекционным выходом, позволяющие одновременно с визуальным наблюдением двумя глазами, проецировать изображение препарата соответствующей оптикой на монитор компьютера или другой приемник изображения.



Помимо тубусодержателя с тубусом к механической части микроскопа относятся:

  • кронштейн для крепления предметного столика;
  • предметный столик, служащий для размещения препаратов и горизонтального перемещения в двух перпендикулярных направлениях относительно оси микроскопа. Конструкция некоторых столиков позволяет вращать препарат. Вертикальное перемещение предметного столика осуществляется макро- и микромеханизмом.
  • приспособления для крепления и вертикального перемещения конденсора и его центрировки, а также для помещения светофильтров.

Изучение клеток микроорганизмов, невидимых невооруженным глазом, возможно только при помощи микроскопов. Эти приборы позволяют получать изображение исследуемых объектов, увеличенное в сотни раз (световые микроскопы), в десятки и сотни тысяч раз (электронные микроскопы).

Биологический микроскоп называется световым, так как он обеспечивает возможность изучать объект в проходящем свете в светлом и темном поле зрения.

Основными элементами современных световых микроскопов являются механическая и оптическая части (рис. 1).

К механической части относятся штатив, тубус, револьверная насадка, коробка микромеханизма, предметный столик, макрометрический и микрометрический винты.

Штатив состоит из двух частей: основания и тубусодержателя (колонки). Основание микроскопа прямоугольной формы имеет снизу четыре опорные площадки, что обеспечивает устойчивое положение микроскопа на поверхности рабочего стола. Тубусодержатель соединяется с основанием и может перемещаться в вертикальной плоскости при помощи макро- и микрометрического винтов. При вращении винтов по часовой стрелке тубусодержатель опускается, при вращении против часовой стрелки – поднимается от препарата. В верхней части тубусодержателя укреплена головка с гнездом для монокулярной (или бинокулярной) насадки и направляющей для револьверной насадки. Головка крепится винтом .

Тубус – это труба микроскопа, позволяющая поддерживать определенное расстояние между основными оптическими деталями – окуляром и объективом. Вверху в тубус вставляется окуляр. Современные модели микроскопов имеют наклонный тубус.

Револьверная насадка представляет собой вогнутый диск с несколькими гнездами, в которые ввинчиваются 34 объектива. Вращая револьверную насадку, можно быстро установить любой объектив в рабочее положение под отверстие тубуса.

Рис. 1. Устройство микроскопа:

1 – основание; 2 – тубусодержатель; 3 – тубус; 4 – окуляр; 5 – револьверная насадка; 6 – объектив; 7 – предметный столик; 8 – клеммы, прижимающие препарат; 9 – конденсор; 10 – кронштейн конденсора; 11 – рукоятка перемещения конденсора; 12 – откидная линза; 13 – зеркало; 14 – макровинт; 15 – микровинт; 16 – коробка с механизмом микрометрической фокусировки; 17 – головка для крепления тубуса и револьверной насадки; 18 – винт для крепления головки

Коробка микромеханизма несет с одной стороны направляющую для кронштейна конденсора, а с другой – направляющую для тубусодержателя. Внутри коробки находится механизм фокусировки микроскопа, представляющий собой систему зубчатых колес.

Предметный столик служит для размещения на нем препарата или другого объекта исследования. Столик может быть квадратным или круглым, подвижным или неподвижным. Подвижный столик перемещается в горизонтальной плоскости при помощи двух боковых винтов, что позволяет рассматривать препарат в разных полях зрения. На неподвижном столике для обследования объекта в разных полях зрения препарат перемещают рукой. В центре предметного столика имеется отверстие для освещения снизу лучами света, направляемыми от осветителя. На столике имеются две пружинные клеммы , предназначенные для закрепления препарата.

Некоторые системы микроскопов снабжены препаратоводителем, необходимым при исследовании поверхности препарата или при подсчете клеток. Препаратоводитель позволяет производить передвижение препарата в двух взаимно-перпендикулярных направлениях. На препаратоводителе имеется система линеек – нониусов, с помощью которых можно присвоить координаты любой точке исследуемого объекта.

Макрометрический винт (макровинт) служит для предварительной ориентировочной установки изображения рассматриваемого объекта. При вращении макровинта по часовой стрелке тубус микроскопа опускается, при вращении против часовой стрелки – поднимается.

Микрометрический винт (микровинт) используют для точной установки изображения объекта. Микрометрический винт является одной из наиболее легко повреждаемых частей микроскопа, поэтому с ним надо обращаться осторожно – не вращать с целью грубой установки изображения во избежание самопроизвольного опускания тубуса. При полном повороте микровинта тубус передвигается на 0,1 мм.

Оптическая часть микроскопа состоит из основных оптических деталей (объектив и окуляр) и вспомогательной осветительной системы (зеркало и конденсор).

Объективы (от лат. objektum – предмет) – наиболее важная, ценная и хрупкая часть микроскопа. Они представляют собой систему линз, заключенных в металлическую оправу, на которой указаны степень увеличения и числовая апертура. Наружная линза, обращенная плоской стороной к препарату, называется фронтальной. Именно она обеспечивает увеличение. Остальные линзы называются коррекционными и служат для устранения недостатков оптического изображения, возникающих при рассмотрении исследуемого объекта.

Объективы бывают сухие и иммерсионные, или погружные. Сухим называется объектив, у которого между фронтальной линзой и рассматриваемым объектом находится воздух. Сухие объективы обычно имеют большое фокусное расстояние и увеличение 8х или 40х. Иммерсионным (погружным) называют объектив, у которого между фронтальной линзой и препаратом находится специальная жидкая среда. Вследствие разницы между показателями преломления стекла (1,52) и воздуха (1,0) часть световых лучей преломляется и не попадает в глаз наблюдателя. В результате этого изображение получается нечетким, более мелкие структуры остаются невидимыми. Избежать рассеивания светового потока можно путем заполнения пространства между препаратом и фронтальной линзой объектива веществом, показатель преломления которого близок к коэффициенту преломления стекла. К таким веществам относятся глицерин (1,47), кедровое (1,51), касторовое (1,49), льняное (1,49), гвоздичное (1,53), анисовое масло (1,55) и другие вещества. Иммерсионные объективы имеют на оправе обозначения: I (immersion ) иммерсия, Н I (homogen immersion ) – однородная иммерсия, OI (oil immersion ) или МИ – масляная иммерсия. В настоящее время в качестве иммерсионной жидкости чаще используют синтетические продукты, соответствующие по оптическим свойствам кедровому маслу.

Объективы различают по их увеличению. Величина увеличения объективов обозначена на их оправе (8х, 40х, 60х, 90х). Кроме того, каждый объектив характеризуется определенной величиной рабочего расстояния. Для иммерсионного объектива это расстояние составляет 0,12 мм, для сухих объективов с увеличением 8х и 40х – 13,8 и 0,6 мм соответственно.

Окуляр (от лат. okularis – глазной) состоит из двух линз – глазной (верхней) и полевой (нижней), заключенных в металлическую оправу. Окуляр служит для увеличения изображения, которое дает объектив. Увеличение окуляра обозначено на его оправе. Существуют окуляры с рабочим увеличением от 4х до 15х.

При длительной работе с микроскопом следует пользоваться бинокулярной насадкой. Корпуса насадки могут раздвигаться в пределах 55–75 мм в зависимости от расстояния между глазами наблюдателя. Бинокулярные насадки часто имеют собственное увеличение (около 1,5х) и коррекционные линзы.

Конденсор (от лат. condenso – уплотняю, сгущаю) состоит из двух-трех короткофокусных линз. Он собирает лучи, идущие от зеркала, и направляет их на объект. При помощи рукоятки, расположенной под предметным столиком, конденсор может перемещаться в вертикальной плоскости, что приводит к увеличению освещенности поля зрения при поднятом конденсоре и уменьшению его при опущенном конденсоре. Для регулировки интенсивности освещения в конденсоре имеется ирисовая (лепестковая) диафрагма, состоящая из стальных серповидных пластинок. При полностью открытой диафрагме рекомендуется рассматривать окрашенные препараты, при уменьшенном отверстии диафрагмы – неокрашенные. Под конденсором расположена откидная линза в оправе, используемая при работе с объективами малого увеличения, например, 8х или 9х.

Зеркало имеет две отражающие поверхности – плоскую и вогнутую. Оно закреплено на шарнирах в основании штатива и его можно легко поворачивать. При искусственном освещении рекомендуется пользоваться вогнутой стороной зеркала, при естественном – плоской.

Осветитель выполняет функциюискусственногоисточника света. Он состоит из низковольтной лампы накаливания, закрепляющейся на штативе, и понижающего трансформатора. На корпусе трансформатора имеется рукоятка реостата, регулирующего накал лампы и тумблер для включения осветителя.

Во многих современных микроскопах осветитель вмонтирован в основание.

Первые понятия о микроскопе формируются в школе на уроках биологии. Там дети узнают на практике, что с помощью этого оптического прибора можно рассматривать маленькие объекты, которые невозможно увидеть невооруженным глазом. Микроскоп, строение его интересуют многих школьников. Продолжением этих интересных уроков для кого-то из них становится вся дальнейшая взрослая жизнь. При выборе некоторых профессий необходимо знать строение микроскопа, так как он является основным инструментом в работе.

Строение микроскопа

Устройство оптических приборов соответствует законам оптики. Строение микроскопа основывается на его составных частях. Узлы прибора в виде тубуса, окуляра, объектива, стойки, столика для расположения осветителя с конденсором имеют определенное назначение.

Стойка удерживает на себе тубус с окуляром, объективом. К стойке прикреплен предметный столик с осветителем и конденсором. Осветитель - это встроенная лампа или зеркальце, служащее для освещения исследуемого объекта. Изображение получается более ярким у осветителя с электрической лампой. Назначение конденсора в этой системе заключается в регулировании освещенности, фокусировании лучей на изучаемом предмете. Известно строение микроскопов без конденсоров, в них устанавливается одиночная линза. В практической работе удобнее пользоваться оптикой с подвижным столиком.

Строение микроскопа, его конструкция непосредственно зависят от предназначения этого прибора. Для научных исследований используется рентгеновское и электронное оптическое оборудование, имеющее более сложное устройство, чем световые приборы.

Строение светового микроскопа отличается простотой. Это самые доступные они наиболее широко применяются в практике. Окуляр в виде двух увеличительных стекол, помещенных в оправу, и объектив, который также состоит из увеличительных стекол, заправленных в оправу, - вот главные узлы светового микроскопа. Весь этот набор вставлен в тубус и прикреплен к штативу, в который вмонтирован и предметный столик с расположенным под ним зеркалом, а также осветитель с конденсором.

Главным принципом работы светового микроскопа является увеличение изображения размещенного на предметном столике посредством прохождения через него лучей света с дальнейшим попаданием их на систему линз объектива. Такую же роль выполняют линзы окуляра, которыми пользуется исследователь в процессе изучения объекта.

Нужно отметить, что световые микроскопы тоже не одинаковы. Разница между ними определяется количеством оптических блоков. Различаются монокулярные, бинокулярные или стереомикроскопы с одним или двумя оптическими блоками.

Несмотря на то, что эти оптические приборы используются уже многие годы, они остаются невероятно востребованными. С каждым годом они совершенствуются, становятся точнее. Еще не сказано последнее слово в истории таких полезных приборов, как микроскопы.

В учебных лабораториях наиболее распространены биологические микроскопы МБР-1 (МБИ-1) и М-11 (М-9), приведенные на рисунке 1. Они дают увеличение от 56 до 1350 раз.

Рис.1. Общий вид биологических микроскопов :
А - микроскоп М-11 ; Б - микроскоп МБР-1 ; 1-окуляр; 2-тубус; 8 - тубусодержатель; 4 - кремальера грубой наводки; 5 - микрометрический винт; 6 - основание штатива; 7 - зеркало; 8 - конденсор и ирисовая диафрагма; 9 - подвижный предметный столик; 10 - револьвер с объективами.

В каждом микроскопе независимо от конструкции можно различить оптическую и механическую части.

Оптическая часть , являясь главной в микроскопе, состоит из объективов, сменяемых окуляров и осветительного устройства. При помощи объектива, состоящего из системы 5-7 линз, получают сильно увеличенное, действительное, обратное изображение исследуемого объекта (или его части) и при помощи окуляра, как через лупу, рассматривают это изображение. Окуляр состоит из системы 2-3 линз и дополнительно увеличивает изображение объекта без добавления тонких деталей. Обычно микроскопы имеют три объектива, дающие увеличение в 8, 40 и 90 раз.

В соответствии с этим на объективе поставлена цифра 8, 40 или 90. Аналогично и на окулярах поставлены цифры их увеличения. Чаще всего употребляют окуляры с увеличением 7, 10 и 15 раз (соответственно этому ставят обозначения 7 Х, 10 Х и 15 Х). Общее увеличение микроскопа можно определить, если умножить увеличение объектива на увеличение окуляра. Например, при окуляре 10 Х и объективах 8 и 40 мы будем иметь увеличение микроскопа 8 Х 10 = 80 раз и 40 Х 10 = 400 раз, а при окуляре 15 Х и объективах 8 и 40 - соответственно в 120 и 600 раз. Размеры поля зрения микроскопа ограничены специальной диафрагмой, находящейся внутри окуляра между его линзами. Поэтому при малых увеличениях микроскопа мы будем видеть общую картину объекта, а при больших увеличениях - центральный участок рассматриваемого объекта. На объективах ставят не только цифры, показывающие их собственное увеличение, но и цифры (0,20; 0,65; 1,25), обозначающие их численную (нумерическую) апертуру. Чем больше нумерическая апертура объектива, тем выше его разрешающая способность и тем больше тонких деталей можно увидеть в изучаемом объекте. Иногда бывает и третья цифра, характеризующая толщину покровного стекла, на которую рассчитан объектив.

Нумерическая апертура объектива (NA) - это величина, характеризующая светособирающую способность объектива. Под разрешающей способностью объектива микроскопа (d) понимают тот наименьший диаметр частицы, которую можно увидеть в микроскоп d = λ / 2NA, где λ - длина волны световых лучей, NА - нумерическая апертура объектива.

Для занятий достаточно употреблять два увеличения: слабое (56-80 раз) с объективом 8 и сильное (400-600 раз) с объективом 40.

Осветительное устройство состоит из подвижного зеркала, ирисовой диафрагмы, конденсора и двух матовых стекол (обычного и синего). Оно служит для направления света на препарат (объект), установки оптимального освещения объекта и регулировки силы освещения. Зеркало имеет две поверхности - плоскую и вогнутую. Иногда рекомендуют применять вогнутую поверхность зеркала при слабых источниках освещения, а плоскую поверхность при сильных источниках освещения. Однако эта рекомендация ошибочна, так как совершенно не учитывает принцип освещения объектов в современных микроскопах, имеющих конденсор. Вогнутое зеркало следует применять только при снятом конденсоре микроскопа, а во всех остальных случаях для правильного освещения изучаемого объекта следует применять плоское зеркало.

Лучи света, падающие от окна или от электрической осветительной лампы, зеркало направляет в отверстие диафрагмы через конденсор, состоящий из системы 2-3 линз, на изучаемый препарат. В простейшем препарате изучаемый объект помещен в капле воды на специальном предметном стекле (толщиной 1-1,5 мм) и накрыт покровным стеклом (толщиной 0,12-0,20 мм).

Ирисовая диафрагма служит для изменения ширины светового потока, направляемого зеркалом через конденсор на препарат, в соответствии с диаметром фронтальной линзы объектива. Для этого при рассмотрении препарата вынимают окуляр и, глядя в тубус микроскопа, уменьшают отверстие диафрагмы конденсора до появления ее краев на светлом фоне фронтальной линзы объектива. При этом пучок света, проходящий через диафрагму, становится примерно равным тому, который может пропустить фронтальная линза объектива. Использовать диафрагму для иных целей не рекомендуется, так как это может ухудшить качество изображения объекта.

Конденсор можно передвигать специальной кремальерой, и это позволяет установить оптимальное освещение препарата (то есть сфокусировать световой пучок на объекте) при различной толщине предметного стекла. Обычное положение конденсора самое верхнее, и не следует перемешать его вниз для регулировки силы освещения объекта.

Регулируют освещение в микроскопе матовыми стеклами (белое или синее), которые вкладывают в специальную откидную оправу, находящуюся под ирисовой диафрагмой конденсора.

К механической части микроскопа относятся: подставка микроскопа (основание штатива - башмак); шарнир (отсутствует в микроскопах МБР-1 и МБИ-1); тубусодержатель дугообразной формы; кремальера (винт с зубчаткой и зубчатой рейкой) перемещения конденсора и диафрагмы; подвижный предметный столик с отверстием в средней части, двумя пружинящими зажимами (клеммами), двумя винтами для перемещения столика и стопорным винтом; кремальера перемещения тубуса микроскопа (винт грубой наводки); коробка микромеханизма и связанный с ней микрометрический винт; тубус (труба) микроскопа; револьвер с тремя или четырьмя гнездами для ввинчивания объективов.

Поворотом револьвера быстро сменяют объективы. В верхнюю часть тубуса вставляют один из окуляров. Шарнир, соединяющий тубусодержатель с подставкой, позволяет нам устанавливать удобный угол наклона тубуса микроскопа М-11 (М-9). В микроскопе МБР-1 (МБИ-1) тубус установлен с постоянным углом наклона. Зажимы служат для закрепления препарата над отверстием в столике. Винт грубой наводки предназначен для грубого перемещения тубуса микроскопа и обычно используется при малом увеличении (8). Микрометрическим винтом пользуются при больших увеличениях микроскопа (объективы 40 и 90) для изучения всей толщины объекта; его не следует поворачивать в ту или другую сторону более чем на один поворот во избежание порчи тонкого микрометрического механизма. Перед началом работы метка на неподвижной части тубусодержателя микроскопа должна находиться между двумя черточками подвижной части коробки микромеханизма (метки нанесены сбоку), а метка на микрометрическом винте должна стоять против цифры «ноль» на шкале винта. Микромеханизм перемещает тубус микроскопа вместе с механизмом грубой подачи.

Нужно бережно обращаться с микроскопом. Переносят его с места хранения на рабочее место обеими руками: одной рукой берут за тубус, а другой поддерживают за основание. Никогда не следует применять силу при заедании револьвера или одной из кремальер. Все части микроскопа нужно поддерживать в чистоте, оберегать от соприкосновения с химически активными жидкостями (кислота, щелочи, органические растворители). Нельзя прикасаться пальцами к линзам объектива, окуляра и конденсора. В случае загрязнения их протирают чистыми хлопчатобумажными тряпочками (сухими, или смоченными водой, или увлажненными бензином, или смесью спирта с эфиром). После окончания работы микроскоп следует накрывать колпаком, непроницаемым для пыли (из полиэтиленовой пленки или плотной материи). Ремонтировать, чистить и смазывать микроскоп может только опытный мастер.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции