28.10.2019

Средства охраны на сенсорных сетях. Анализ технологий сенсорных сетей. Аппаратное обеспечение и стандарты



1.Звуковая система ПК

Звуковая система ПК в виде звуковой карты появилась в 1989 г., существенно расширив возможности ПК как технического сред­ства информатизации.

Звуковая система ПК - комплекс программно-аппаратных средств, выполняющих следующие функции:

запись звуковых сигналов, поступающих от внешних источни­ков, например, микрофона или магнитофона, путем преобразо­вания входных аналоговых звуковых сигналов в цифровые и по­следующего сохранения на жестком диске;

воспроизведение записанных звуковых данных с помощью внешней акустической системы или головных телефонов (науш­ников);

воспроизведение звуковых компакт-дисков;

микширование (смешивание) при записи или воспроизведе­нии сигналов от нескольких источников;

одновременная запись и воспроизведение звуковых сигналов (режим Full Duplex );

обработка звуковых сигналов: редактирование, объединение или разделение фрагментов сигнала, фильтрация, изменение его уровня;

обработка звукового сигнала в соответствии с алгоритмами объемного (трехмерного - 3 D - Sound ) звучания;

генерирование с помощью синтезатора звучания музыкальных инструментов, а также человеческой речи и других звуков;

управление работой внешних электронных музыкальных инст­рументов через специальный интерфейс MIDI.

Звуковая система ПК конструктивно представляет собой зву­ковые карты, либо устанавливаемые в слот материнской пла­ты, либо интегрированные на материнскую плату или карту рас­ширения другой подсистемы ПК. Отдельные функциональные мо­дули звуковой системы могут выполняться в виде дочерних плат, устанавливаемых в соответствующие разъемы звуковой карты.

Классическая звуковая система, как показано на рис. 5.1, со­держит:

Модуль записи и воспроизведения звука;



  • модуль синтезатора;

  • модуль интерфейсов;

  • модуль микшера;

  • акустическую систему.
Первые четыре модуля, как правило, устанавливаются на зву­ковой карте. Причем существуют звуковые карты без модуля син­тезатора или модуля записи/воспроизведения цифрового звука. Каждый из модулей может быть выполнен либо в виде отдельной микросхемы, либо входить в состав многофункциональной мик­росхемы. Таким образом, Chipset звуковой системы может содер­жать как несколько, так и одну микросхему.

Конструктивные исполнения звуковой системы ПК претерпе­вают существенные изменения; встречаются материнские платы с установленным на них Chipset для обработки звука.

Однако назначение и функции модулей современной звуковой системы (независимо от ее конструктивного исполнения) не ме­няются. При рассмотрении функциональных модулей звуковой карты принято пользоваться терминами «звуковая система ПК» или «звуковая карта».

2. Модуль записи и воспроизведения

Модуль записи и воспроизведения звуковой системы осуще­ствляет аналого-цифровое и цифроаналоговое преобразования в режиме программной передачи звуковых данных или передачи их по каналам DMA (Direct Memory Access - канал прямого доступа к памяти).

Звук, как известно, представляет собой продольные волны, свободно распространяющиеся в воздухе или иной среде, поэтому звуковой сигнал непрерывно изменяется во времени и в про­странстве.

Запись звука - это сохранение информации о колебаниях зву­кового давления в момент записи. В настоящее время для записи и передачи информации о звуке используются аналоговые и циф­ровые сигналы. Другими словами, звуковой сигнал может быть представлен в аналоговой или цифровой форме.

Если при записи звука пользуются микрофоном, который пре­образует непрерывный во времени звуковой сигнал в непрерыв­ный во времени электрический сигнал , получают звуковой сиг­нал в аналоговой форме. Поскольку амплитуда звуковой волны определяет громкость звука, а ее частота - высоту звукового тона, постольку для сохранения достоверной информации о звуке на­пряжение электрического сигнала должно быть пропорционально звуковому давлению, а его частота должна соответствовать часто­те колебаний звукового давления.

На вход звуковой карты ПК в большинстве случаев звуковой сигнал подается в аналоговой форме. В связи с тем что ПК опери­рует только цифровыми сигналами, аналоговый сигнал должен быть преобразован в цифровой. Вместе с тем акустическая систе­ма, установленная на выходе звуковой карты ПК, воспринимает только аналоговые электрические сигналы, поэтому после обра­ботки сигнала с помощью ПК необходимо обратное преобразова­ние цифрового сигнала в аналоговый.

Аналого-цифровое преобразование представляет собой преобра­зование аналогового сигнала в цифровой и состоит из следующих основных этапов: дискретизации, квантования и кодирования. Схема аналого-цифрового преобразования звукового сигнала пред­ставлена на рис. 5.2.

Предварительно аналоговый звуковой сигнал поступает на ана­логовый фильтр, который ограничивает полосу частот сигнала.

Дискретизация сигнала заключается в выборке отсче­тов аналогового сигнала с заданной периодичностью и определя­ется частотой дискретизации. Причем частота дискретизации дол­жна быть не менее удвоенной частоты наивысшей гармоники (ча­стотной составляющей) исходного звукового сигнала. Поскольку человек способен слышать звуки в частотном диапазоне от 20 Гц до 20 кГц, максимальная частота дискретизации исходного зву­кового сигнала должна составлять не менее 40 кГц, т. е. отсчеты требуется проводить 40 000 раз в секунду. В связи с этим в боль­шинстве современных звуковых систем ПК максимальная частота дискретизации звукового сигнала составляет 44,1 или 48 кГц.

Квантование по амплитуде представляет собой измерение мгновенных значений амплитуды дискретного по времени сигна­ла и преобразование его в дискретный по времени и амплитуде. На рис. 5.3 показан процесс квантования по уровню аналогового сигнала, причем мгновенные значения амплитуды кодируются 3-разрядными числами.




Кодирование заключается в преобразовании в цифровой код квантованного сигнала. При этом точность измерения при кван­товании зависит от количества разрядов кодового слова. Если зна­чения амплитуды записать с помощью двоичных чисел и задать длину кодового слова N разрядов, число возможных значений ко­довых слов будет равно 2 N . Столько же может быть и уровней квантования амплитуды отсчета. Например, если значение амплитуды отсчета представляется 16-разрядным кодовым словом, максималь­ное число градаций амплитуды (уровней квантования) составит 2 16 = 65 536. Для 8-разрядного представления соответственно полу­чим 2 8 =256 градаций амплитуды.

Аналого-цифровое преобразование осуществляется специаль­ным электронным устройством - аналого-цифровым преобразова­ телем (АЦП), в котором дискретные отсчеты сигнала преобразу­ются в последовательность чисел. Полученный поток цифровых данных, т.е. сигнал, включает как полезные, так и нежелатель­ные высокочастотные помехи, для фильтрации которых получен­ные цифровые данные пропускаются через цифровой фильтр.

Цифроаналоговое преобразование в общем случае происходит в два этапа, как показано на рис. 5.4. На первом этапе из потока цифровых данных с помощью цифроаналогового преобразователя (ЦАП) выделяют отсчеты сигнала, следующие с частотой диск­ретизации. На втором этапе из дискретных отсчетов путем сглажи­вания (интерполяции) формируется непрерывный аналоговый сиг­нал с помощью фильтра низкой частоты, который подавляет пе­риодические составляющие спектра дискретного сигнала.

Для записи и хранения звукового сигнала в цифровой форме требуется большой объем дискового пространства. Например, сте­реофонический звуковой сигнал длительностью 60 с, оцифрован­ный с частотой дискретизации 44,1 кГц при 16-разрядном кван­товании для хранения требует на винчестере около 10 Мбайт.

Для уменьшения объема цифровых данных, необходимых для представления звукового сигнала с заданным качеством, исполь­зуют компрессию (сжатие), заключающуюся в уменьшении (Количества отсчетов и уровней квантования или числа бит, при-I холящихся на один отсчет.




Подобные методы кодирования звуковых данных с использо­ванием специальных кодирующих устройств позволяют сократить объем потока информации почти до 20 % первоначального. Выбор метода кодирования при записи аудиоинформации зависит от набора программ сжатия - кодеков (кодирование-декодиро­вание), поставляемых вместе с программным обеспечением зву­ковой карты или входящих в состав операционной системы.

Выполняя функции аналого-цифрового и цифроаналогового преобразований сигнала , модуль записи и воспроизведения циф­рового звука содержит АЦП, ЦАП и блок управления, которые обычно интегрированы в одну микросхему, также называемую кодеком. Основными характеристиками этого модуля являют­ся: частота дискретизации; тип и разрядность АЦП и ЦАП; спо­соб кодирования аудиоданных; возможность работы в режиме Full Duplex .

Частота дискретизации определяет максимальную час­тоту записываемого или воспроизводимого сигнала. Для записи и воспроизведения человеческой речи достаточно 6 - 8 кГц; му­зыки с невысоким качеством - 20 - 25 кГц; для обеспечения высококачественного звучания (аудиокомпакт-диска) частота дискретизации должна быть не менее 44 кГц. Практически все звуковые карты поддерживают запись и воспроизведение стерео­фонического звукового сигнала с частотой дискретизации 44,1 или 48 кГц.

Разрядность АЦП и ЦАП определяет разрядность пред­ставления цифрового сигнала (8, 16 или 18 бит). Подавляющее большинство звуковых карт оснащено 16-разрядными АЦП и ЦАП. Такие звуковые карты теоретически можно отнести к классу Hi-Fi, которые должны обеспечивать студийное качество звуча­ния. Некоторые звуковые карты оснащаются 20- и даже 24-раз­рядными АЦП и ПАП, что существенно повышает качество запи­си/воспроизведения звука.

Full Duplex (полный дуплекс) - режим передачи данных по каналу, в соответствии с которым звуковая система может одно­временно принимать (записывать) и передавать (воспроизводить) аудиоданные. Однако не все звуковые карты поддерживают этот режим в полном объеме, поскольку не обеспечивают высокое ка­чество звука при интенсивном обмене данными. Такие карты можно использовать для работы с голосовыми данными в Internet, на­пример, при проведении телеконференций, когда высокое каче­ство звука не требуется.

3. Модуль синтезатора

Электромузыкальный цифровой синтезатор звуковой системы позволяет генерировать практически любые звуки, в том числе и звучание реальных музыкальных инструментов. Принцип действия синтезатора иллюстрирует рис. 5.5.

Синтезирование представляет собой процесс воссоздания струк­туры музыкального тона (ноты). Звуковой сигнал любого музыкаль­ного инструмента имеет несколько временных фаз. На рис. 5.5, а показаны фазы звукового сигнала, возникающего при нажатии клавиши рояля. Для каждого музыкального инструмента вид сиг­нала будет своеобразным, но в нем можно выделить три фазы: атаку, поддержку и затухание. Совокупность этих фаз называется амплитудной огибающей, форма которой зависит от типа музы­кального инструмента. Длительность атаки для разных музы­кальных инструментов изменяется от единиц до нескольких де­сятков или даже до сотен миллисекунд. В фазе, называемой под­держкой, амплитуда сигнала почти не изменяется, а высота музыкального тона формируется во время поддержки. Последней фазе, затуханию, соответствует участок достаточно быстрого уменьшения амплитуды сигнала.

В современных синтезаторах звук создается следующим обра­зом. Цифровое устройство , использующее один из методов синте­за, генерирует так называемый сигнал возбуждения с заданной высотой звука (ноту), который должен иметь спектральные ха­рактеристики, максимально близкие к характеристикам имити­руемого музыкального инструмента в фазе поддержки, как пока­зано на рис. 5.5, б. Далее сигнал возбуждения подается на фильтр, имитирующий амплитудно-частотную характеристику реального музыкального инструмента. На другой вход фильтра подается сигнал амплитудной огибающей того же инструмента. Далее совокупность сигналов обрабатывается с целью получения специальных звуковых эффектов, например, эха (реверберация), хорового исполнения (хо-рус). Далее производятся цифроаналоговое преобразование и фильт­рация сигнала с помощью фильтра низких частот (ФНЧ). Основные характеристики модуля синтезатора:

Метод синтеза звука;

Объем памяти;

Возможность аппаратной обработки сигнала для создания зву­ковых эффектов;

Метод синтеза звука, использующийся в звуковой системе ПК, определяет не только качество звука, но и состав системы. На практике на звуковых картах устанавливаются синтезаторы, гене­рирующие звук с использованием следующих методов.

Метод синтеза на основе частотной модуляции (Frequency Modulation Synthesis - FM-синтез) предполагает исполь­зование для генерации голоса музыкального инструмента как ми­нимум двух генераторов сигналов сложной формы. Генератор не­сущей частоты формирует сигнал основного тона, частотно-мо­дулированный сигналом дополнительных гармоник, обертонов, определяющих тембр звучания конкретного инструмента. Генера­тор огибающей управляет амплитудой результирующего сигнала. FM-генератор обеспечивает приемлемое качество звука, отлича­ется невысокой стоимостью, но не реализует звуковые эффекты. В связи с этим звуковые карты, использующие этот метод, не рекомендуются в соответствии со стандартом РС99.

Синтез звука на основе таблицы волн (Wave Table Synthesis - WT-синтез) производится путем использования пред­варительно оцифрованных образцов звучания реальных музыкаль­ных инструментов и других звуков, хранящихся в специальной ROM, выполненной в виде микросхемы памяти или интегриро­ванной в микросхему памяти WT-генератора. WT-синтезатор обес­печивает генерацию звука с высоким качеством. Этот метод син­теза реализован в современных звуковых картах.

Объем памяти на звуковых картах с WT-синтезатором может увеличиваться за счет установки дополнительных элементов па­мяти (ROM) для хранения банков с инструментами.

Звуковые эффекты формируются с помощью специального эффект-процессора, который может быть либо самостоя­тельным элементом (микросхемой), либо интегрироваться в состав WT-синтезатора. Для подавляющего большинства карт с WT-синтезом эффекты реверберации и хоруса стали стандартными. Синтез звука на основе физического моделирования предусматривает использование математических моделей звуко­образования реальных музыкальных инструментов для генера­ции в цифровом виде и для дальнейшего преобразования в зву­ковой сигнал с помощью ЦАП. Звуковые карты, использую­щие метод физического моделирования, пока не получили широкого распространения , поскольку для их работы требует­ся мощный ПК.

4. Модуль интерфейсов

Модуль интерфейсов обеспечивает обмен данными между звуко­вой системой и другими внешними и внутренними устройствами.

Интерфейс ISA в 1998 г. был вытеснен в звуковых картах интер­фейсом PCI.

Интерфейс PCI обеспечивает широкую полосу пропускания (например, версия 2.1 - более 260 Мбит/с), что позволяет пере­давать потоки звуковых данных параллельно. Использование шины PCI позволяет повысить качество звука, обеспечив отношение сигнал/шум свыше 90 дБ. Кроме того, шина PCI обеспечивает возможность кооперативной обработки звуковых данных, когда задачи обработки и передачи данных распределяются между зву­ковой системой и CPU.

MIDI (Musical Instrument Digital Interface - цифровой интерфейс музыкальных инструментов) регламентируется специальным стан­дартом, содержащим спецификации на аппаратный интерфейс: типы каналов, кабели, порты, при помощи которых MIDI-устройства подключаются один к другому, а также описание поряд­ка обмена данными - протокола обмена информацией между MIDI-устройствами. В частности, с помощью MIDI-команд мож­но управлять светотехнической аппаратурой, видеооборудовани­ем в процессе выступления музыкальной группы на сцене. Уст­ройства с MIDI-интерфейсом соединяются последовательно, об­разуя своеобразную MIDI-сеть, которая включает контроллер - управляющее устройство, в качестве которого может быть исполь­зован как ПК, так и музыкальный клавишный синтезатор, а так­же ведомые устройства (приемники), передающие информацию в контроллер по его запросу. Суммарная длина MIDI-цепочки не ограничена, но максимальная длина кабеля между двумя MIDI-устройствами не должна превышать 15 метров.

Подключение ПК в MIDI-сеть осуществляется с помощью спе­циального MIDI-адаптера, который имеет три MIDI-порта: вво­да, вывода и сквозной передачи данных, а также два разъема для подключения джойстиков.

В состав звуковой карты входит интерфейс для подключения приводов CD-ROM.
5. Модуль микшера

Модуль микшера звуковой карты выполняет:

коммутацию (подключение/отключение) источников и при­емников звуковых сигналов, а также регулирование их уровня;

микширование (смешивание) нескольких звуковых сигналов и регулирование уровня результирующего сигнала.

К числу основных характеристик модуля микшера относятся:


  • число микшируемых сигналов на канале воспроизведения;

  • регулирование уровня сигнала в каждом микшируемом канале;

  • регулирование уровня суммарного сигнала;

  • выходная мощность усилителя;

  • наличие разъемов для подключения внешних и внутренних приемников/источников звуковых сигналов.
Источники и приемники звукового сигнала соединяются с модулем микшера через внешние или внутренние разъемы. Вне­шние разъемы звуковой системы обычно находятся на задней па­нели корпуса системного блока: Joystick / MIDI - для подключе­ния джойстика или MIDI-адаптера; Mic In - для подключения микрофона; Line In - линейный вход для подключения любых источников звуковых сигналов; Line Out - линейный выход для подключения любых приемников звуковых сигналов ; Speaker - для подключения головных телефонов (наушников) или пассив­ной акустической системы.

Программное управление микшером осуществляется либо сред­ствами Windows, либо с помощью программы-микшера, поставля­емой в комплекте с программным обеспечением звуковой карты.

Совместимость звуковой системы с одним из стандартов зву­ковых карт означает, что звуковая система будет обеспечивать качественное воспроизведение звуковых сигналов. Проблемы со­вместимости особенно важны для DOS-приложений. Каждое из них содержит перечень звуковых карт, на работу с которыми DOS-приложение ориентировано.

Стандарт Sound Blaster поддерживают приложения в виде игр для DOS, в которых звуковое сопровождение запрограммировано с ориентацией на звуковые карты семейства Sound Blaster.

Стандарт Windows Sound System (WSS ) фирмы Microsoft вклю­чает звуковую карту и пакет программ, ориентированный в ос­новном на бизнес-приложения.

6. Акустическая система

Акустическая система (АС) непосредственно преобразует зву­ковой электрический сигнал в акустические колебания и являет­ся последним звеном звуковоспроизводящего тракта.

В состав АС, как правило, входят несколько звуковых коло­нок, каждая из которых может иметь один или несколько динамиков. Количество колонок в АС зависит от числа компонентов, составляющих звуковой сигнал и образующих отдельные звуко­вые каналы.

Например, стереофонический сигнал содержит два компонен­та - сигналы левого и правого стереоканалов, что требует не ме­нее двух колонок в составе стереофонической акустической сис­темы. Звуковой сигнал в формате Dolby Digital содержит инфор­мацию для шести звуковых каналов: два фронтальных стереокана­ла, центральный канал (канал диалогов), два тыловых канала и канал сверхнизких частот. Следовательно, для воспроизведения сигнала Dolby Digital акустическая система должна иметь шесть звуковых колонок.

Как правило, принцип действия и внутреннее устройство зву­ковых колонок бытового назначения и используемых в техниче­ских средствах информатизации в составе акустической системы PC практически не различаются.

В основном АС для ПК состоит из двух звуковых колонок, ко­торые обеспечивают воспроизведение стереофонического сигна­ла. Обычно каждая колонка в АС для ПК имеет один динамик, однако в дорогих моделях используются два: для высоких и низ­ких частот. При этом современные модели акустических систем позволяют воспроизводить звук практически во всем слышимом частотном диапазоне благодаря применению специальной конст­рукции корпуса колонок или громкоговорителей.

Для воспроизведения низких и сверхнизких частот с высоким качеством в АС помимо двух колонок используется третий звуко­вой агрегат - сабвуфер (Subwoofer ), устанавливаемый под ра­бочим столом. Такая трехкомпонентная АС для ПК состоит из двух так называемых сателлитных колонок, воспроизводящих средние и высокие частоты (примерно от 150 Гц до 20 кГц), и сабвуфера, воспроизводящего частоты ниже 150 Гц.

Отличительная особенность АС для ПК - возможность нали­чия собственного встроенного усилителя мощности. АС со встро­енным усилителем называется активной. Пассивная АС усилителя не имеет.

Главное преимущество активной АС состоит в возможности подключения к линейному выходу звуковой карты. Питание ак­тивной АС осуществляется либо от батареек (аккумуляторов), либо от электрической сети через специальный адаптер, выполненный в виде отдельного внешнего блока или модуля питания, устанав­ливаемого в корпус одной из колонок.

Выходная мощность акустических систем для ПК может изме­няться в широком диапазоне и зависит от технических характе­ристик усилителя и динамиков. Если система предназначена для

озвучивания компьютерных игр, достаточно мощности 15 -20 Вт на колонку для помещения средних размеров. При необходимо­сти обеспечения хорошей слышимости во время лекции или пре­зентации в большой аудитории возможно использовать одну АС, имеющую мощность до 30 Вт на канал. С увеличением мощности АС увеличиваются ее габаритные размеры и повышается сто­имость.

Современные модели акустических систем имеют гнездо для головных телефонов, при подключении которых воспроизведе­ние звука через колонки автоматически прекращается.

Основные характеристики АС: полоса воспроизводимых час­тот, чувствительность, коэффициент гармоник, мощность.

Полоса воспроизводимых частот (FrequencyRespon ­ se ) - это амплитудно-частотная зависимость звукового давления, или зависимость звукового давления (силы звука) от частоты пе­ременного напряжения, подводимого к катушке динамика. Поло­са частот, воспринимаемых ухом человека, находится в диапазо­не от 20 до 20 000 Гц. Колонки, как правило, имеют диапазон, ограниченный в области низких частот 40 - 60 Гц. Решить пробле­му воспроизведения низких частот позволяет использование саб­вуфера.

Чувствительность звуковой колонки (Sensitivity ) характеризуется звуковым давлением, которое она создает на рас­стоянии 1 м при подаче на ее вход электрического сигнала мощ­ностью 1 Вт. В соответствии с требованиями стандартов чувстви­тельность определяется как среднее звуковое давление в опреде­ленной полосе частот.

Чем выше значение этой характеристики , тем лучше АС пере­дает динамический диапазон музыкальной программы. Разница между самыми «тихими» и самыми «громкими» звуками совре­менных фонограмм 90-95 дБ и более. АС с высокой чувствитель­ностью достаточно хорошо воспроизводят как тихие, так и гром­кие звуки.

Коэффициент гармоник (Total Harmonic Distortion - THD ) оценивает нелинейные искажения, связанные с появлени­ем в выходном сигнале новых спектральных составляющих. Коэф­фициент гармоник нормируется в нескольких диапазонах частот. Например, для высококачественных АС класса Hi-Fi этот коэф­фициент не должен превышать: 1,5% в диапазоне частот 250- 1000 Гц; 1,5 % в диапазоне частот 1000-2000 Гц и 1,0 % в диапа­зоне частот 2000 - 6300 Гц. Чем меньше значение коэффициента гармоник, тем качественнее АС.

Электрическая мощность (Power Handling ), которую выдерживает АС, является одной из основных характеристик. Од­нако нет прямой взаимосвязи между мощностью и качеством вос­произведения звука. Максимальное звуковое давление зависит,

скорее, от чувствительности, а мощность АС в основном опреде­ляет ее надежность.

Часто на упаковке АС для ПК указывают значение пиковой мощности акустической системы, которая не всегда отражает ре­альную мощность системы, поскольку может превышать номи­нальную в 10 раз. Вследствие существенного различия физических процессов, происходящих при испытаниях АС, значения элек­трических мощностей могут отличаться в несколько раз. Для срав­нения мощности различных АС необходимо знать, какую именно мощность указывает производитель продукции и какими метода­ми испытаний она определена.

Среди производителей высококачественных и дорогих АС - фирмы Creative, Yamaha, Sony, Aiwa. AC более низкого класса выпускают фирмы Genius, Altec, JAZZ Hipster.

Некоторые модели колонок фирмы Microsoft подключаются не к звуковой карте, а к порту USB. В этом случае звук поступает на колонки в цифровом виде, а его декодирование производит не­большой Chipset, установленный в колонках.
7. Направления совершенствования звуковой системы

В настоящее время фирмы Intel, Compaq и Microsoft предло­жили новую архитектуру звуковой системы ПК. Согласно этой архитектуре модули обработки звуковых сигналов выносятся за пределы корпуса ПК, в котором на них действуют электричес­кие помехи, и размещаются, например, в колонках акустической системы. В этом случае звуковые сигналы передаются в цифровой форме, что значительно повышает их помехозащищенность и ка­чество воспроизведения звука. Для передачи цифровых данных в цифровой форме предусматривается использование высокоско­ростных шин USB и ШЕЕ 1394.

Еще одним направлением совершенствования звуковой систе­мы является создание объемного (пространственного) звука, на­зываемого трехмерным, или 3D-Sound (Three Dimentional Sound ). Для получения объемного звучания производится специальная обработка фазы сигнала: фазы выходных сигналов левого и пра­вого каналов сдвигаются относительно исходного. При этом ис­пользуется свойство мозга человека определять положение источ­ника звука путем анализа соотношения амплитуд и фаз звукового сигнала, воспринимаемого каждым ухом. Пользователь звуковой системы, оборудованной специальным модулем обработки 3D-звука, ощущает эффект «перемещения» источника звука.

Новым направлением применения мультимедийных техноло­гий является создание домашнего театра на базе ПК (PC - Theater ), т.е. варианта мультимедийного ПК, предназначенного одновре­менно нескольким пользователям для наблюдения за игрой, про-

смотра образовательной программы или фильма в стандарте DVD. PC-Theater в своем составе имеет специальную многоканальную акустическую систему, формирующую объемный звук (Surround Sound ). Системы Surround Sound создают в помещении различные звуковые эффекты , причем пользователь ощущает, что он нахо­дится в центре звукового поля, а источники звука - вокруг него. Многоканальные звуковые системы Surround Sound используют­ся в кинотеатрах и уже начинают появляться в виде устройств бытового назначения.

В многоканальных системах бытового назначения звук записы­вается на двух дорожках лазерных видеодисков или видеокассет по технологии Dolby Surround, разработанной фирмой Dolby Laboratories. К наиболее известным разработкам в этом направле­нии относятся:

Dolby (Surround ) Pro Logic - четырехканальная звуковая систе­ма, содержащая левый и правый стереоканалы, центральный ка­нал для диалогов и тыловой канал для эффектов.

Dolby Surround Digital - звуковая система, состоящая из 5 + 1 ка­налов: левого, правого, центрального, левого и правого каналов тыловых эффектов и канала сверхнизких частот. Запись сигналов для системы выполняется в виде цифровой оптической фоно­граммы на кинопленке.

В отдельных моделях акустических колонок помимо стандарт­ных регуляторов высоких/низких частот, громкости и баланса имеются кнопки для включения специальных эффектов, напри­мер, ЗD-звука, Dolby Surround и др.

Контрольные вопросы

    Какие основные функции выполняет звуковая система ПК?

    Какие основные компоненты входят в состав звуковой системы ПК?

    Исходя из каких соображений выделяется частота дискретизации сигнала в процессе аналого-цифрового преобразования?


  1. Перечислите основные этапы аналого-цифрового и цифроаналогового преобразования.
  2. Какие основные параметры характеризуют модуль записи и воспроизведения звука?

    Какие применяют методы синтеза звука?

    Какие функции выполняет модуль микшера и что относится к числу его основных характеристик?

    В чем отличие пассивной акустической системы от активной?

Звуковая система

(греч. sustnma, нем. Tonsystem) - высотная (интервальная) организация муз. звуков на основе к.-л. единого принципа. В основе З. с. всегда лежит ряд тонов, находящихся в определённых, поддающихся измерению соотношениях. Термин "З. с." применяется в разл. значениях:
1) звуковой состав, т.е. совокупность используемых звуков в пределах определённого интервала (часто в пределах октавы, например пятизвуковая, двенадцатизвуковая системы);
2) определённое расположение элементов системы (З. с. как звукоряд; З. с. как комплекс звуковых групп, напр. аккордов в тональной системе мажора и минора);
3) система качественных, смысловых отношений, функций звуков, складывающаяся на основе определённого принципа связи между ними (напр., значения тонов в мелодических ладах, гармонической тональности);
4) строй, математич. выражение отношений между звуками (пифагорейская система, равномерно- темперированная система).
Осн. значение понятия З. с. связано со звуковым составом и его структурой. З. с. отражает степень развития, логич. связность и упорядоченность муз. мышления и исторически эволюционирует вместе с ним. Эволюция З. с., в реальном историч. процессе осуществляемая сложным путём и изобилующая внутренними противоречиями, в целом определённо ведёт к утончению звуковой дифференциации, увеличению количества входящих в систему тонов, укреплению и упрощению связей между ними, созданию сложной разветвлённой иерархии связей на основе звукового родства.
Логич. схема развития З. с. лишь приблизительно соответствует конкретно-историч. процессу её становления. З. с. в собств. смысле генетически предшествует первобытное глиссандирование, лишённое дифференцированных тонов, из к-рого только начинают выделяться опорные звуки.

Напев племени кубу (Суматра) - любовная песня юноши. По Э. Хорнбостелю.
Сменяющая её низшая форма З. с. представляет собой опевание одного опорного тона, устоя (

), прилегающими (

) сверху или снизу.

РУССКАЯ НАРОДНАЯ ПРИБАУТКА

КОЛЯДНАЯ
Прилегающий тон может не закрепляться стабильно на определённой высоте или быть приблизительным по высотному положению.
Дальнейший рост системы обусловливает возможность поступенного, кантиленного движения мелодии (в условиях пяти-, семиступенности системы или к.-л. иной структуры гаммы) и обеспечивает связность целого благодаря опоре на звуки, находящиеся в отношениях наивысшего родства друг с другом. Поэтому следующий важнейший этап развития З. с. - "эпоха кварты", заполнение промежутка между звуками "первого консонанса" (кварта оказывается наименее удалённым от исходного опорного тона звуком, находящимся с ним в отношениях совершенного консонанса; вследствие этого она получает преимущество перед другими, ещё более совершенными консонансами - октавой, квинтой). Заполнение кварты образует ряд звуковой системы - бесполутонные трихорды и несколько тетрахордов различной структуры:

ТРИХОРДЫ

ТЕТРАХОРДЫ

КОЛЫБЕЛЬНАЯ

БЫЛИННЫЙ НАПЕВ
При этом прилегающие и проходящие тоны стабилизируются и становятся опорами для новых прилегающих. На основе тетрахорда возникают пентахорды, гексахорды:

МАСЛЕНИЧНАЯ

ХОРОВОДНАЯ
Из сцепления трихордов и тетрахордов, а также пентахордов (слитным или раздельным способом) складываются составные системы, различные по количеству звуков, - гексахорды, гептахорды, октахорды, к-рые в свою очередь объединяются в ещё более сложные, многосоставные З. с. октавные и неоктавные:

ПЕНТАТОНИКА

УКРАИНСКАЯ ВЕСНЯНКА

ПЛЯСОВАЯ

ПОГЛАСИЦА ЗНАМЕННОГО РАСПЕВА

РУССКАЯ НАРОДНАЯ ПЕСНЯ

НА РОЖДЕСТВО БОГОРОДИЦЫ, ЗНАМЕННОГО РАСПЕВА

СИСТЕМА ГЕКСАХОРДОВ
Теоретич. обобщение практики вводнотоновости в европ. музыке позднего средневековья и Возрождения ("musica ficta"), когда целотоновые заключения и целотоновые последования всё более систематично заменялись полутоновыми (напр., вместо
c-d
e-d
ход
cis-d
e-d),
выразилось в виде хроматико-энгармонич. семнадцатиступенного звукоряда (у Просдочимо де Бельдемандиса, кон. 14 - нач. 15 вв.):

Развитие многоголосия и становление консонирующего трезвучия в качестве главного элемента З. с. привели к её полной внутренней реорганизации - группировке всех тонов системы вокруг этого опорного созвучия, выступающего как в функции центр, тонич. трезвучия (тоники), так и в виде его мультипликаций на всех остальных ступенях диатонич. гаммы:

Роль конструктивного фактора З. с. постепенно переходит от ладомелодич. моделей к аккордово-гармоническим; в соответствии с этим З. с. начинает излагаться не в виде звукоряда ("лестницы звуков" - scala, Tonleiter), а в виде функционально связанных звуковых групп. Как и на других этапах развития З. с., все важнейшие черты более ранних форм З. с. присутствуют и в более высокоразвитой З. с. - энергия мелодич. линеарности, микросистемы из опорного тона (устоя) и прилегающих, заполнение кварты (и квинты), мультипликация тетрахордов и т.д. Комплексы принадлежащих единому централизов. целому звуковых групп - аккордов на всех ступенях - вместе с определёнными звукорядами становятся новым типом З. с - гармонич. тональностью (см. прим. выше), а упорядоченная их совокупность составляет "систему систем" из мажорных и минорных тональностей на каждой из ступеней хроматич. звукоряда. Общий звуковой объём системы теоретически простирается в бесконечность, но ограничивается возможностями восприятия высоты тона и представляет собой хроматически заполненный диапазон в пределах примерно от А2 до с5. Становление мажоро-минорной тональной системы в 16 в. потребовало замены пифагорейского строя по чистым квинтам (напр., f - с - g - d - а - е - h) квинтово-терцовым (т.н. чистый, или натуральный, строй Фольяни - Царлино), использующим два строит. интервала - квинту 2:3 и большую терцию 4:5 (напр., F - а - С - е - G - h - D; большие буквы указывают на примы и квинты трезвучий, малые - на терции, по М. Гауптману). Развитие тональной системы (в особенности практика использования разл. тональностей) вызвало необходимость в равномерно-темперированном строе.
Соприкосновение элементов разл. тональностей приводит к установлению связей между ними, к их сближению и далее - слиянию. Вместе со встречным процессом роста внутритональной хроматики (альтерации) слияние разнотональных элементов ведёт к тому, что в пределах одной тональности оказываются принципиально возможными любой интервал, любой аккорд и любой звукоряд от каждой ступени. Этот процесс подготовил новую реорганизацию структуры З. с. в творчестве ряда композиторов 20 в.: все ступени хроматич. звукоряда у них эмансипируются, система превращается в 12-ступенную, где каждый интервал понимается непосредственно (а не на основе квинтовых или квинтово-терцовых отношений); и исходной структурной единицей З. с. становится полутон (или большая септима) - как производное квинты и большой терции. Это даёт возможность построения симметричных (напр., терцохроматических) ладов и систем, возникновения тональной двенадцати- ступенности, т.н. "свободной атональности" (см. Атональная музыка), серийной организации (в частности - додекафонии) и т.д.
Внеевропейские З. с. (напр., стран Азии, Африки) иногда образуют разновидности, далеко отстоящие от европейских. Так, более или менее обычная диатоника индийской музыки украшена интонац. оттенками, теоретически объясняемыми как результат деления октавы на 22 части (система шрути, трактуемая также как совокупность всех возможных высот).

В яванской музыке 5- и 7-ступенное "равномерное" деление октавы (слендро и пелог) не совпадают ни с обычной ангемитонной пентатоникой, ни с квинтовой или квинтово-терцовой диатоникой.
Литература : Серов A. H., Русская народная песня как предмет науки (3 статьи), "Музыкальный сезон", 1869-70, No 18, 1870-71, No 6 и 13, переизд. в его кн.: Избранные статьи, т. 1, M.-Л., 1950; Сокальский П. P., Русская народная музыка?, Хар., 1888, Петр В. И., О составах, строях и ладах в древнегреческой музыке, К., 1901 Яворский Б., Строение музыкальной речи, т. 1-3, М., 1908, Tюлин Ю. H., Учение о гармонии, Л., 1937, М, 1966; Кузнецов К. А., Арабская музыка, в сб.: Очерки по истории и теории музыки, т. 2, Л., 1940; Оголевец А. С., Введение в современное музыкальное мышление, M.-Л., 1946; Музыкальная акустика. Общ. Ред. H. А. Гарбузова, М, 1954; Джами А., Трактат о музыке. Ред. и комментарии В. M. Беляева, Таш., 1960; Переверзев Н. К., Проблемы музыкального интонирования, М., 1966; Мещанинов П., Эволюция звуковысотной ткани (структурно-акустическое обоснование...), М., 1970 (рукопись); Котляревский I., Дiатоника i хроматика як категорiп музичного мисления, Kипв, 1971; Fortlage К., Das musikalische System der Griechen in seiner Urgestalt, Lpz., 1847, Riemann H., Katechismus der Musikgeschichte, Tl 1, Lpz., 1888, рус. пер. - Катехизис истории музыки, ч. 1, М., 1896), его же, Das chromatische Tonsystem, в его кн.: Prдludien und Studien, Bd I, Lpz., 1895, Emmanuel M., Histoire de la langue musicale, v. I-II, R., 1911; Haba A., Harmonische Grundlagen des Vierteltonsystems, Prag, 1922; Еllis A. J., Ьber die Tonleitern verschiedener Vцlker, в кн.: Abhandlungen zur vergleichender Musikwissenschaft Munch., 1922; Stumpf C., Tonsystem und Musik der Siamesen там же, Abraham O., Hornbostel E. M., Tonsystem und Musik der Japaner, там же Hornbostel E. M., Ьber die Musik der Kubu, там же его же, Musikalische Tonsysteme, в кн.: Handbuch der Physik hrsg. von H. Geiger und К. Scheel, Bd VIII. Akustik, B., 1927; Farmer H. G., A history of Arabian music to the XIII century, L., 1929; Hornbostel E. M., Lachmann R., Das indische Tonsystem bei Bharata und sein Ursprung "Zeitschrift fьr vergleichende Musikwissenschaft", Jahrg. 1, No 4, 1933; Gombosi O. J., Tonarten und Stimmungen der antiken Musik, Kph., 1939; Strunk О., The tonal system of Byzantine music, "MQ", v. XXVIII, 1942, No 2 Danckert W., Der Ursprung der halbtonlosen Pentatomk, в кн.: Fes schritt Z. Kodбly, Bdpst, 1943; Szabolcsi B., Five-tone scales and civilisation, "Acta musicologica", XV, 1943, p. 24-34; Handschin J., Der Toncharakter, Z., 1948; Kunst J., Music in Java, v. 1-2, The Hague, 1949; Hood M., The nuclear theme as a determinant of Patet in Javanese music, Groningen (Djakarta), 1954; Schneider M., Die Entstehung der Tonsysteme, в кн.: Kongress-Bericht Hamburg. 1956, Kassel-Basel, 1957; Wiora W., Alter als Pentatomk, в кн.: Studia memoriae Belae Bartуk Sacra, Bdpst, 1957, p. 185-208, Вardоs L., Natьrliche Tonsysteme, там же, p. 209-48, Avasi B., Tonsysteme aus Intervall-Permutationen, там же, p. 249-300, Smits van Waesberghe J., Antike und Mittelalter in unserem Tonsystem, "Musica", Jahrg. XII, 1958, H. 11, Sachs С., Vergleichende Musikwissenschaft. Musik der Fremdkulturen, Hdlb., 1959; Spiess L. B., The Diatonic "Chromaticism" of the Enchiriadis treatises, "Journal of the American Musicological Society", v. XII, 1959, No 1, Husmann H., Grundlagen der antiken und orientalischen Musikkultur, B., 1961; Vogel М., Die Entstehung der Kirchentonarten, в кн.: Kongress-Bericht Kassel 1962, (Kassel, 1962), его же, An den Grenzen des Tonsystems, "Musica", Jahrg. XVII, 1963; H. 4, Кrаеhenbuehl D., Schmidt Chr., On the development of musical system, "Journal of Music Theory", v. VI, 1962 No 1, Apfel Е., Spatmittelalterliche Klangstruktur und Dur-Moll-Tonalitat, "Die Musikforschung", Jahrg. XVI, 1963, H. 2 Dahlhaus K., Untersuchungen ьber die Entstehung der harmonischen Tonalltдt, Kassel - (u. a.), 1968; Manik L., Das arabische Tonsystem im Mittelalter, Leiden, 1969. Ю. H. Холопов.


Музыкальная энциклопедия. - М.: Советская энциклопедия, Советский композитор . Под ред. Ю. В. Келдыша . 1973-1982 .

- Звуковая система, правильнее звуковысотная система (нем. Tonsystem, от греч. σύστημα) материальная основа музыкально логических отношений гармонии. Термин восходит к древнегреческой теории музыки (гармонике), где словом σύστημα… … Википедия

звуковая система скорости счёта нейтронов - (с индикацией в виде гудков, пропорциональных скорости счёта нейтронов) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN audio count rate circuit …

Звуковая плата Creative Labs Sound Blaster Live! … Википедия

звуковая частота - Частота от 20 Гц до 20 кГц. [ГОСТ 24375 80] звуковая частота Частота, воспринимаемая ухом человека и лежащая в диапазоне примерно от 16 Гц до 20 кГц. Верхнюю границу звуковой частоты условно принимают равной 20 кГц. Единица измерения Гц [Система… … Справочник технического переводчика

звуковая волна - Упругая волна, частота которой лежит в звуковом диапазоне (условно от 16 Гц до 20 кГц). [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.] Тематики… … Справочник технического переводчика

Звуковые колонки на концертной площадке Звуковая колонка (линейный массив) акустическая система, состоящая из большого количества одинаковых громкоговорителей … Википедия

TrackIR 4:PRO, закрепленная на ноутбуке Система отслеживания движений головы устройство ввода информации в персональных компьютерах, преобразующее движения головы пользователя в координаты. В потребительских системах применяются … Википедия

У этого термина существуют и другие значения, см. Система охлаждения. Система охлаждения компьютера набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов. Тепло в конечном итоге может утилизироваться: В… … Википедия


sound card ) - дополнительное оборудование персонального компьютера , позволяющее обрабатывать звук (выводить на акустические системы и/или записывать). На момент появления звуковые платы представляли собой отдельные карты расширения , устанавливаемые в соответствующий слот . В современных материнских платах представлены в виде интегрированного в материнскую плату аппаратного кодека (согласно спецификации Intel AC’97 или Intel HD Audio).

Взаимодействие человека с ЭВМ должно быть прежде всего взаимным (на то оно и общение). Взаимность, в свою очередь, предусматривает возможность общения как человека с ЭВМ, так и ЭВМ с человеком. Неоспоримый факт, что визуальная информация, дополненная звуковой, гораздо эффективнее простого зрительного воздействия. Попробуйте, заткнув уши, пообщаться с кем-нибудь хотя бы минуту, сомневаюсь, что вы получите большое удовольствие, равно как и ваш собеседник. Однако пока многие ортодоксально настроенные программисты/ проектировщики до сих пор не хотят признавать, что звуковое воздействие может играть роль не только сигнализатора, но информационного канала, и соответственно от неумения и/или нежелания не используют в своих проектах возможность невизуального общения человека с ЭВМ, но даже они никогда не смотрят телевизор без звука. В настоящее время любой крупный проект, не оснощенный средствами multimedia (в дальнейшем под словом "средства multimedia" мы будем прежде всего понимать совокупность аппаратно/программных средств, дополняющие традиционно визуальные способы взаимодействия человека с ЭВМ) обречен на провал.

ОСНОВНЫЕ МЕТОДЫ ОЗВУЧИВАНИЯ

Есть много способов заставить компьютер заговорить или заиграть.

1. Цифроаналоговое преобразование (Digital to Analogue (D/A) conversion). Любой звук (музыка или речь) содержаться в памяти компьютера в цифровом виде (в виде самплов) и с помощью DAC трансформируются в аналоговый сигнал, который подается на усиливающую аппаратуру, а затем на наушники, колонки, etc.

2. Синтез. Компьютер посылает в звуковую карту нотную информацию, а карта преобразует ее в аналоговый сигнал (музыку). Существует два способа синтеза:

а) Frequency Modulation (FM) synthesis , при котором звук воспроизводит специальный синтезатор, который оперирует математическим представлением звуковой волны (частота, амплитуда, etc) и из совокупности таких искусственных звуков создается практически любое необходимое звучание.

Большинство систем, оснащенных FM-синтезом показывают очень неплохие результаты на проигрывании "компьютерной" музыки, но попытка симулировать звучание живых инструментов не очень хорошо удается. Ущербность FM-синтеза состоит в том, что с его помощью очень сложно (практически невозможно) создать действительно реалистическую инструментальную музыку, с большим наличием высоких тонов (флейта, гитара, etc). Первой звуковой картой, которая стала использовать эту технологию, был легендарный Adlib, который для этой целей использовал чип из синтеза Yamaha YM3812FM. Большинство Adlib-совместимых карт (SoundBlaster, Pro Audio Spectrum) также используют эту технологию, только на других более современных типах микросхем, таких как Yamaha YMF262 (OPL-3) FM.

б) синтез по таблице волн (Wavetable synthesis), при этом методе синтеза заданный звук "набирается" не из синусов математических волн, а из набора реально озвученных инструментов - самплов. Самплы сохраняются в RAM или ROM звуковой карты. Специальный звуковой процессор выполняет операции над самлами (с помощью различного рода математических преобразований изменяется высота звука, тембр, звук дополняется спецэффектами).

Так как самплы - оцифровки реальных инструментов, они делают звук крайне реалистичным. До не давнего времени подобная техника использовалась только в hi-end инструментах, но она становится все более популярной теперь. Пример популярной карты, использующей WS Gravis Ultra Sound (GUS).

3. MIDI. Компьютер посылает на MIDI-интерфейс специальные коды, каждый из которых обозначает действие, которое должен произ вести MIDI-устройство (обычно это синтезатор) (General) MIDI - это основной стандарт большинства звуковых плат. Звуковая плата, самостоятельно интерпретирует, посылаемые коды и приводит им в соответствие звуковые самлы (или патчи), хранящиеся в памяти карты. Количество этих патчей в стандарте GM равно 128. На PC - совместимых компьютерах исторически сложились два MIDI-интерфейса: UART MIDI и MPU-401. Первый рализован в SoundBlaster"s картах, второй использовался в ранних моделях Roland.

ЗВУКОВЫЕ ВОЗМОЖНОСТИ СЕМЕЙСТВА IBM PC

Уже на самых первых моделях IBM PC имелся встроенный динамик, который однако не был предназначен для точного воспроизведения звука: он не обеспечивал воспроизведения всех частот слышимого диапазона и не имел средств управления громкостью звучания. И хотя PC speaker сохранился на всех клонах IBM до сего дня - это скорее дань традиции, чем жизненная необходимость, ибо динамик никогда не играл сколь-нибудь серьезной роли в общении человека с ЭВМ.

Однако, уже в модели PCjr появился специальный звуковой генератор TI SN76496A, который можно считать предвестником современных звуковых процессоров. Выход этого звукового генератора, мог быть подключен к стерео-усилителю, а сам он имел 4 голоса (не совсем корректное высказывание - на самом деле микросхема TI имела четыре независимых звуковых генератора, но с точки зрения программиста это была одна микросхема, имеющая четыре независимых канала). Все четыре голоса имели независимое управление громкостью и частотой звучания. Однако из-за маркетинговых ошибок модель PCjr так и не получила широкого распространения, была об"явлена неперспективной, снята с производства и поддержка ее была прекращена. С этого момента фирма IBM больше не оснащала свои компьютеры звуковыми средствами собственной разработки. И с этого момента место на рынке прочно заняли звуковые платы.

Аудиосистема компьютера

Звуковая система компьютера состоит из звукового адаптера (звуковой карты) и электроакустических преобразователях звуковых колебаний (микрофона и звуковых колонок).

Звуковые карты выполняют следующие функции:

§ дискретизацию аналоговых сигналов с частотами 11,025 кГц, 22,05 и 44,1 кГц. Первая частота относится к 8 битовым картам, другие – к 16 битовым;

§ 8- или 16– битовое квантование, кодирование и декодирование с использованием линейной импульсно-кодовой модуляции (ИКМ);

§ одновременно производить запись и воспроизведение звуковой информации (режим Full duplex);

§ ввод сигналов через монофонический микрофон с автоматическим регулированием уровня входного сигнала;

§ ввод и вывод аудиосигналов через линейный вход/выход;

§ микширование (смешивание) сигналов от нескольких источников и выдача суммарного сигнала в выходной канал. В качестве источников используются:

а) аналоговый выход CD-ROM;

в) музыкальный синтезатор;

г) внешний источник, подключенный к линейному входу.

§ управление уровнем суммарного сигнала и сигнала каждого из каналов в отдельности;

§ обработка стереофонических сигналов;

§ синтез звуковых колебаний с использованием частотной модуляции (FM) и волновых таблиц (WT).

Звуковая карта должна использовать не более 13% ресурсов процессора ЭВМ при частоте дискретизации 44,1 кГц и не более 7% - при f g = 22,05 кГц. В звуковой карте осуществляется обработка аналоговых и цифровых сигналов. В соответствии со спецификацией АС-97 (Audio Codec 97 Component Specification ), разработанной фирмой Intel в 1997 году, обработка звуковых сигналов разделена между двумя устройствами:

звуковым кодеком (AC-audio codec ) и

цифровым контроллером (DC – digital controller ).

Аналоговая БИС должна располагаться вблизи звуковых соединителей ввода/вывода и как можно дальше от шумящих цифровых шин. Цифровая БИС располагается ближе к системной шине звуковой карты. Соединение этих микросхем осуществляется по унифицированной внутренней шине AC–link. В современных моделях РС эти микросхемы располагаются на системной плате компьютера. Расширенная модификация БИС звукового кодека дополнительно выполняет функции модема.

В упрощенном виде схема аудиосистемы РС может быть представлена следующим образом (рисунок 10.13). Микрофон (М) осуществляет преобразование акустических колебаний в электрический, а громкоговоритель (Гр.) преобразование электрических колебаний в акустические. Входной сигнал с микрофона усиливается, а с линейного входа подается непосредственно на аналого-цифровой преобразователь.

Рисунок 10.13 - Структура звуковой карты

Дискретный сигнал можно представить в виде произведения исходного сигнала U(t) и дискретизирующей последовательности P(t)

U д (t) = U(t)P(t) .

Дискретизирующая последовательность состоит из очень коротких импульсов. При теоретическом описании эта последовательность представляется δ – импульсами, которые следуют с частотой дискретизации f о = 1/Т о

P(t) = ∑ δ (t - nT o)

Временная диаграмма процесса дискретизации и квантования показана на рисунке 10.14

Синтез звуковых сигналов. Синтезатор предназначен для генерации звуков музыкальных инструментов, соответствующие определенным нотам, а также создавать „немузыкальные” звуки: шум ветра, выстрела и т.п.

Одна и та же нота, воспроизводимая на музыкальном инструменте, звучит по разному (скрипка, труба, саксофон). Это вызвано тем, что хотя определенной ноте соответствует колебание конкретной частоты, звуки различных инструментов, кроме основного тона (синусоиды), характеризуются наличием дополнительных гармоник – обертонов. Именно обертоны определяют тембровый окрас голоса музыкального инструмента.

Рисунок 10.14– Временная диаграмма оцифровки входного сигнала

Созданный с помощью музыкального инструмента звуковой сигнал состоит из трех характерных фрагментов – фаз. Так, например, при нажатии клавиши рояля амплитуда звука сначала быстро растет до максимума, а затем немного спадает (рисунке 10.15). Начальная фаза звукового сигнала называется атакой. Длительность атаки для различных музыкальных инструментов варьируется от единиц до десятков и даже сотен мс. После атаки начинается фаза „поддержки”, в течение которой звуковой сигнал имеет стабильную амплитуду. Слуховое ощущение высоты звука формируется как раз на стадии поддержки.

Далее следует участок с относительно быстрым затуханием уровня сигнала. Огибающая колебаний во время атаки, поддержки и затухания называется амплитудной огибающей. Различные музыкальные инструменты имеют разные амплитудные огибающие, тем не менее, отмеченные фазы характерны практически для всех музыкальных инструментов, за исключением ударных.

Для создания электронного аналога реального звука, т.е. для синтеза звука, необходимо воссоздать огибающие гармоник, из которых состоит реальный звук. Существует несколько методов синтеза. Одним из первых и наиболее изученных является аддитивный синтез. Звук в процессе синтеза формируется путем сложения нескольких исходных звуковых волн. Этот метод использовали еще в классическом органе. Специальной конструкцией клапанов при нажатии клавиши заставляли звучать сразу несколько труб. При этом звучащие трубы были настроены либо в унисон или в одну две октавы. При нажатии клавиши первыми начинали звучать короткие трубы, дающие высокие обертоны, затем вступала средняя секция и последними – басы.

При цифровом аддитивном синтезе отдельно формируется N гармоник с частотами от f 1 до f N и амплитудами от A 1 (t) до A N (t). Затем эти гармоники складываются.

Второй метод является разновидностью нелинейного синтеза. Для получения одного музыкального звука используется сигнал одного генератора. Гармоническую окраску получают в результате нелинейных искажений исходного сигнала. Для этого синусоидальный сигнал, формируемый генератором, управляемым кодом (ГУК) с амплитудой A 1 и частотой f 1 (рисунок 10.16 а) пропускают через нелинейный элемент с некоторой характеристикой К(х) (рисунок 10.16 б). Зная амплитуду сигнала A 1 и вид характеристики К(х) , можно вычислить спектр сигнала на выходе (рисунок 10.16 в).

Следующим широко распространенным методом является синтез на основе частотной модуляции (широко используется в ЭМИ фирмы Yamaha). При частотной модуляции осуществляется изменение частоты f 0 несущего колебания U(t) = Asin (2πf 0 + φ) по закону модулирующего колебания x (t). Выражения для частотно-модулированного колебание имеет вид

U(t) = Asin (ω o t + Δω∫dt),

Величина изменения частоты несущего колебания Δω 0 =2π f 0 называется девиацией частоты, аотношение отклонения Δf 0 частоты модулированного колебания к частоте модулирующего колебания f m называется индексом частотной модуляции m f = Δf 0 /f m . Изменяя индекс модуляции можно изменять спектр сигнала на выходе модулятора и тем самым достичь качества синтезируемого звука, близкого к естественному звучанию.

Выражения для частотно-модулированного колебание при синусоидальном модулирующем колебании x (t) = sin ω o t имеет вид

U(t) = Asin .

Спектр модулированных сигналов при различных индексах модуляции изображен на рисунке 10.17.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции