02.06.2021

Производной функции s t называют. Приращение функции. Производные элементарных функций


Найти выражение для производной экспоненциальной функции \(y = {e^x}\), пользуясь определением производной.

Решение.

Начальные шаги являются стандартными: сначала запишем приращение функции \(\Delta y\), соответствующее приращению аргумента \(\Delta x\): \[ {\Delta y = y\left({x + \Delta x} \right) - y\left(x \right) } = {{e^{x + \Delta x}} - {e^x} } = {{e^x}{e^{\Delta x}} - {e^x} } = {{e^x}\left({{e^{\Delta x}} - 1} \right).} \] Производная вычисляется как предел отношения приращений: \[ {y"\left(x \right) = \lim\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^x}\left({{e^{\Delta x}} - 1} \right)}}{{\Delta x}}.} \] Функция \(y = {e^x}\) в числителе не зависит от Δx и ее можно вынести за знак предела. Тогда производная принимает такой вид: \[ {y"\left(x \right) = {\left({{e^x}} \right)^\prime } } = {{e^x}\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}}.} \] Обозначим полученный предел через \(L\) и вычислим его отдельно. Заметим попутно, что \({e^0} = 1\) и, поэтому, можно записать \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - {e^0}}}{{\Delta x}} = e"\left(0 \right),} \] то есть данный предел представляет собой значение производной показательной функции в нуле. Следовательно, \ Мы получили соотношение, в котором искомая производная выражается через саму функцию \(y = {e^x}\) и ее производную в точке \(x = 0\). Докажем, что \ Для этого вспомним, что число \(e\) определяется в виде бесконечного предела как \ а число \(e\) в степени \(\Delta x\) будет, соответственно, равно \[{e^{\Delta x}} = \lim\limits_{n \to \infty } {\left({1 + \frac{{\Delta x}}{n}} \right)^n}.\] Далее применим знаменитую формулу бинома Ньютона и разложим выражение под знаком предела в биномиальный ряд : \[{\left({1 + \frac{{\Delta x}}{n}} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} .\] Здесь \({C_n^k}\) обозначает число сочетаний из \(n\) элементов по \(k\). В европейских и американских учебниках число сочетаний обозначается как \ Вернемся к нашему пределу \(L\), который теперь можно записать в таком виде: \[ {L = \lim\limits_{\Delta x \to 0} \frac{{{e^{\Delta x}} - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}}.} \] Нам удобно в биномиальном ряде выделить первые два слагаемых: при \(k = 0\) и \(k = 1\). В результате получаем \[ {L = \lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {\sum\limits_{k = 0}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {C_n^0{{\left({\frac{{\Delta x}}{n}} \right)}^0} + C_n^1{{\left({\frac{{\Delta x}}{n}} \right)}^1} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\lim\limits_{n \to \infty } \left[ {1 + n \cdot \frac{{\Delta x}}{n} + \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] - 1}}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \frac{{\Delta x + \lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} }}{{\Delta x}} } = {\lim\limits_{\Delta x \to 0} \left[ {1 + \frac{1}{{\Delta x}}\lim\limits_{n \to \infty } \sum\limits_{k = 2}^n {C_n^k{{\left({\frac{{\Delta x}}{n}} \right)}^k}} } \right] } = {1 + \lim\limits_{n \to \infty } \left[ {\lim\limits_{\Delta x \to 0} \left({\sum\limits_{k = 2}^n {C_n^k\frac{{{{\left({\Delta x} \right)}^{k - 1}}}}{{{n^k}}}} } \right)} \right].} \] Очевидно, что сумма ряда стремится к нулю при \(\Delta x \to 0\). Поэтому, \(L = 1\). Это означает, что производная экспоненциальной функции \(y = {e^x}\) равна самой функции: \

Производная функции одной переменной.

Введение.

Настоящие методические разработки предназначены для студентов факультета промышленное и гражданское строительство. Они составлены применительно к программе курса математики по разделу «Дифференциальное исчисление функций одного переменного».

Разработки представляют собой единое методическое руководство, включающее в себя: краткие теоретические сведения; «типовые» задачи и упражнения с подробными решениями и пояснениями к этим решениям; варианты контрольной работы.

В конце каждого параграфа дополнительные упражнения. Такая структура разработок делает их пригодными для самостоятельного овладения разделом при самой минимальной помощи со стороны преподавателя.

§1. Определение производной.

Механический и геометрический смысл

производной.

Понятие производной является одним из самых важных понятий математического анализа.Оно возникло еще в 17 веке. Формирование понятия производной исторически связано с двумя задачами: задачей о скорости переменного движения и задачей о касательной к кривой.

Эти задачи, несмотря на их различное содержание, приводят к одной и той же математической операции, которую нужно провести над функцией.Эта операция получила в математике специальное название. Она называется операцией дифференцирования функции. Результат операции дифференцирования называется производной.

Итак, производной функцииy=f(x) в точкеx0 называется предел (если он существует) отношения приращения функции к приращению аргумента
при
.

Производную принято обозначать так:
.

Таким образом, по определению

Для обозначения производной употребляются также символы
.

Механический смысл производной.

Если s=s(t) – закон прямолинейного движения материальной точки, то
есть скорость этой точки в момент времениt.

Геометрический смысл производной.

Если функция y=f(x) имеет производную в точке, то угловой коэффициент касательной к графику функции в точке
равен
.

Пример.

Найдите производную функции
в точке=2:

1) Дадим точке =2 приращение
. Заметим, что.

2) Найдем приращение функции в точке =2:

3) Составим отношение приращения функции к приращению аргумента:

Найдем предел отношения при
:

.

Таким образом,
.

§ 2. Производные от некоторых

простейших функций.

Студенту необходимо научиться вычислять производные конкретных функций: y=x,y=и вообщеy=.

Найдем производную функции у=х.

т.е. (x)′=1.

Найдем производную функции

Производная

Пусть
тогда

Легко заметить закономерность в выражениях производных от степенной функции
приn=1,2,3.

Следовательно,

. (1)

Эта формула справедлива для любых действительных n.

В частности, используя формулу (1), имеем:

;

.

Пример.

Найдите производную функции

.

.

Данная функция является частным случаем функции вида

при
.

Используя формулу (1), имеем

.

Производные функций y=sin x и y=cos x.

Пусть y=sinx.

Разделим на ∆x, получим

Переходя к пределу при ∆x→0, имеем

Пусть y=cosx .

Переходя к пределу при ∆x→0, получим

;
. (2)

§3. Основные правила дифференцирования.

Рассмотрим правила дифференцирования.

Теорема 1 . Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx,то в этой точке дифференцируема и их сумма, причем производная суммы равна сумме производных слагаемых: (u+v)"=u"+v".(3)

Доказательство: рассмотрим функцию y=f(x)=u(x)+v(x).

Приращению ∆x аргумента x соответствуют приращения ∆u=u(x+∆x)-u(x), ∆v=v(x+∆x)-v(x) функций u и v. Тогда функция y получит приращение

∆y=f(x+∆x)-f(x)=

=--=∆u+∆v.

Следовательно,

Итак, (u+v)"=u"+v".

Теорема 2. Если функцииu=u(x) иv=v(x) дифференцируемы в данной точкеx, то в той же точке дифференцируемо и их произведение.При этом производная произведения находится по следующей формуле: (uv)"=u"v+uv". (4)

Доказательство: Пусть y=uv, где u и v – некоторые дифференцируемые функции от x. Дадим x приращение ∆x;тогда u получит приращение ∆u, v получит приращение ∆v и y получит приращение ∆y.

Имеем y+∆y=(u+∆u)(v+∆v), или

y+∆y=uv+u∆v+v∆u+∆u∆v.

Следовательно, ∆y=u∆v+v∆u+∆u∆v.

Отсюда

Переходя к пределу при ∆x→0 и учитывая, чтоuиvне зависят от ∆x, будем иметь

Теорема 3 . Производная частного двух функций равна дроби, знаменатель которой равен квадрату делителя, а числитель- разности между произведением производной делимого на делитель и произведением делимого на производную делителя, т.е.

Если
то
(5)

Теорема 4. Производная постоянной равна нулю, т.е. если y=C, где С=const, то y"=0.

Теорема 5. Постоянный множитель можно выносить за знак производной, т.е. если y=Cu(x), где С=const, то y"=Cu"(x).

Пример 1.

Найдите производную функции

.

Данная функция имеет вид
, гдеu=x,v=cosx. Применяя правило дифференцирования (4), находим

.

Пример 2.

Найдите производную функции

.

Применим формулу (5).

Здесь
;
.

Задачи.

Найдите производные следующих функций:

;

11)

2)
; 12)
;

3)
13)

4)
14)

5)
15)

6)
16)

7 )
17)

8)
18)

9)
19)

10)
20)

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

Процесс нахождения производной функции называется дифференцированием. Производную приходится находить в ряде задач курса математического анализа. Например, при отыскании точек экстремума и перегиба графика функции.

Как найти?

Чтобы найти производную функции нужно знать таблицу производных элементарных функций и применять основные правила дифференцирования :

  1. Вынос константы за знак производной: $$ (Cu)" = C(u)" $$
  2. Производная суммы /разности функций: $$ (u \pm v)" = (u)" \pm (v)" $$
  3. Производная произведения двух функций: $$ (u \cdot v)" = u"v + uv" $$
  4. Производная дроби : $$ \bigg (\frac{u}{v} \bigg)" = \frac{u"v - uv"}{v^2} $$
  5. Производная сложной функции : $$ (f(g(x)))" = f"(g(x)) \cdot g"(x) $$

Примеры решения

Пример 1
Найти производную функции $ y = x^3 - 2x^2 + 7x - 1 $
Решение

Производная суммы/разности функций равна сумме/разности производных:

$$ y" = (x^3 - 2x^2 + 7x - 1)" = (x^3)" - (2x^2)" + (7x)" - (1)" = $$

Используя правило производной степенной функции $ (x^p)" = px^{p-1} $ имеем:

$$ y" = 3x^{3-1} - 2 \cdot 2 x^{2-1} + 7 - 0 = 3x^2 - 4x + 7 $$

Так же было учтено, что производная от константы равна нулю.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y" = 3x^2 - 4x + 7 $$

{\large\bf Производная функции}

Рассмотрим функцию y=f(x) , заданную на интервале (a, b) . Пусть x - любое фиксированная точка интервала (a, b) , а Δx - произвольное число, такое, что значение x+Δx также принадлежит интервалу (a, b) . Это число Δx называют приращением аргумента.

Определение . Приращением функции y=f(x) в точке x , соответствующим приращению аргумента Δx , назовем число

Δy = f(x+Δx) - f(x) .

Считаем, что Δx ≠ 0 . Рассмотрим в данной фиксированной точке x отношение приращения функции в этой точке к соответствующему приращению аргумента Δx

Это отношение будем называть разностным отношением. Так как значение x мы считаем фиксированным, разностное отношение представляет собой функцию аргумента Δx . Эта функция определена для всех значений аргумента Δx , принадлежащих некоторой достаточно малой окрестности точки Δx=0 , за исключением самой точки Δx=0 . Таким образом, мы имеем право рассматривать вопрос о существовании предела указанной функции при Δx → 0 .

Определение . Производной функции y=f(x) в данной фиксированной точке x называется предел при Δx → 0 разностного отношения, то есть

При условии, что этот предел существует.

Обозначение . y′(x) или f′(x) .

Геометрический смысл производной : Производная от функции f(x) в данной точке x равна тангенсу угла между осью Ox и касательной к графику этой функции в соответствующей точке:

f′(x 0) = \tgα .

Механический смысл производной : Производная от пути по времени равна скорости прямолинейного движения точки:

Уравнение касательной к линии y=f(x) в точке M 0 (x 0 ,y 0) принимает вид

y-y 0 = f′(x 0) (x-x 0) .

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f′(x 0)≠ 0 , то уравнение нормали к линии y=f(x) в точке M 0 (x 0 ,y 0) записывается так:

Понятие дифференцируемости функции

Пусть функция y=f(x) определена на некотором интервале (a, b) , x - некоторое фиксированное значение аргумента из этого интервала, Δx - любое приращение аргумента, такое, что значение аргумента x+Δx ∈ (a, b) .

Определение . Функция y=f(x) называется дифференцируемой в данной точке x , если приращение Δy этой функции в точке x , соответствующее приращению аргумента Δx , может быть представимо в виде

Δy = A Δx +αΔx ,

где A - некоторое число, не зависящее от Δx , а α - функция аргумента Δx , являющая бесконечно малой при Δx→ 0 .

Так как произведение двух бесконечно малых функций αΔx является бесконечно малой более высокого порядка, чем Δx (свойство 3 бесконечно малых функций), то можем записать:

Δy = A Δx +o(Δx) .

Теорема . Для того, чтобы функция y=f(x) являлась дифференцируемой в данной точке x , необходимо и достаточно, чтобы она имела в этой точке конечную производную. При этом A=f′(x) , то есть

Δy = f′(x) Δx +o(Δx) .

Операцию нахождения производной обычно называют дифференцированием.

Теорема . Если функция y=f(x) x , то она непрерывна в этой точке.

Замечание . Из непрерывности функции y=f(x) в данной точке x , вообще говоря, не вытекает дифференцируемость функции f(x) в этой точке. Например, функция y=|x| - непрерывна в точке x=0 , но не имеет производной.

Понятие дифференциала функции

Определение . Дифференциалом функции y=f(x) называется произведение производной этой функции на приращение независимой переменной x :

dy = y′ Δx, df(x) = f′(x) Δx .

Для функции y=x получаем dy=dx=x′Δx = 1· Δx= Δx , то есть dx=Δx - дифференциал независимой переменной равен приращению этой переменной.

Таким образом, можем записать

dy = y′ dx, df(x) = f′(x) dx

Дифференциал dy и приращение Δy функции y=f(x) в данной точке x , оба отвечающие одному и тому же приращению аргумента Δx , вообще говоря, не равны друг другу.

Геометрический смысл дифференциала : Дифференциал функции равен приращению ординаты касательной к графику данной функции, когда аргумент получает приращение Δx .

Правила дифференцирования

Теорема . Если каждая из функций u(x) и v(x) дифференцируема в данной точке x , то сумма, разность, произведение и частное этих функций (частное при условии, что v(x)≠ 0 ) также дифференцируемы в этой точке, причем имеют место формулы:

Рассмотрим сложную функцию y=f(φ(x))≡ F(x) , где y=f(u) , u=φ(x) . В этом случае u называют промежуточным аргументом , x - независимой переменной .

Теорема . Если y=f(u) и u=φ(x) - дифференцируемые функции своих аргументов, то производная сложной функции y=f(φ(x)) существует и равна произведению этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной, т.е.

Замечание . Для сложной функции, являющейся суперпозицией трех функций y=F(f(φ(x))) , правило дифференцирования имеет вид

y′ x = y′ u u′ v v′ x ,

где функции v=φ(x) , u=f(v) и y=F(u) - дифференцируемые функции своих аргументов.

Теорема . Пусть функция y=f(x) возрастает (или убывает) и непрерывна в некоторой окрестности точки x 0 . Пусть, кроме того, эта функция дифференцируема в указанной точке x 0 и ее производная в этой точке f′(x 0) ≠ 0 . Тогда в некоторой окрестности соответствующей точки y 0 =f(x 0) определена обратная для y=f(x) функция x=f -1 (y) , причем указанная обратная функция дифференцируема в соответствующей точке y 0 =f(x 0) и для ее производной в этой точке y справедлива формула

Таблица производных

Инвариантность формы первого дифференциала

Рассмотрим дифференциал сложной функции. Если y=f(x) , x=φ(t) - дифференцируемы функции своих аргументов, то производная функции y=f(φ(t)) выражается формулой

y′ t = y′ x x′ t .

По определению dy=y′ t dt , тогда получим

dy = y′ t dt = y′ x · x′ t dt = y′ x (x′ t dt) = y′ x dx ,

dy = y′ x dx .

Итак, доказали,

Свойство инвариантности формы первого дифференциала функции : как в случае, когда аргумент x является независимой переменной, так и в случае, когда аргумент x сам является дифференцируемой функцией новой переменной, дифференциал dy функции y=f(x) равен производной этой функции, умноженной на дифференциал аргумента dx .

Применение дифференциала в приближенных вычислениях

Мы показали, что дифференциал dy функции y=f(x) , вообще говоря, не равен приращению Δy этой функции. Тем не менее с точностью до бесконечно малой функции более высокого порядка малости, чем Δx , справедливо приближенное равенство

Δy ≈ dy .

Отношение называют относительной погрешностью равенства этого равенства. Так как Δy-dy=o(Δx) , то относительная погрешность данного равенства становится как угодно малой при уменьшении |Δх| .

Учитывая, что Δy=f(x+δ x)-f(x) , dy=f′(x)Δx , получим f(x+δ x)-f(x) ≈ f′(x)Δx или

f(x+δ x) ≈ f(x) + f′(x)Δx .

Это приближенное равенство позволяет с ошибкой o(Δx) заменить функцию f(x) в малой окрестности точки x (т.е. для малых значений Δx ) линейной функцией аргумента Δx , стоящей в правой части.

Производные высших порядков

Определение . Второй производной (или производной второго порядка) функции y=f(x) называется производная от ее первой производной.

Обозначение второй производной функции y=f(x) :

Механический смысл второй производной . Если функция y=f(x) описывает закон движения материальной точки по прямой линии, то вторая производная f″(x) равна ускорению движущейся точки в момент времени x .

Аналогично определяется третья, четвертая производная.

Определение . n -й производной (или производной n -го порядка) функции y=f(x) называется производная от ее n-1 -й производной:

y (n) =(y (n-1))′, f (n) (x)=(f (n-1) (x))′ .

Обозначения: y″′ , y IV , y V и т.д.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции