11.03.2020

Опарина О.Н. Биологические свойства эндотоксина кишечной микрофлоры. Эндотоксины. Эндотоксины микроорганизмов. Эндотоксиновый шок. Эндотоксинемия. Экзоферменты. Суперантигены Эндотоксины микроорганизмов


Термин «пироген» происходит от греческого “pyreto” – лихорадка. Пирогенами называют вещества, способные вызывать повышение температуры тела. Пирогенную реакцию способны вызывать вещества самой различной природы и разного происхождения. К пирогенам можно отнести грамотрицательные бактерии и их токсины, грамположительные бактерии и их токсины, вирусы и продукты их жизнедеятельности, а также стероиды и пр. В области контроля качества инъекционных лекарственных средств практическое значение имеют бактериальные эндотоксины, которые являются фрагментами внешней стенки грамотрицательных бактерий.

Грамотрицательные бактерии обладают двуслойной клеточной стенкой, которая окружает цитоплазматическую мембрану. Первый слой - очень тонкая (толщиной 1 нм) нелипидная мембрана, состоящая из пептидогликана. Его называют также гликопептидом или мукопептидом. Это сложный матрикс, содержащий полисахаридные цепи, связанные друг с другом поперечными сшивками из коротких пептидных цепей. Второй слой клеточной стенки - липидная мембрана толщиной 7,5 нм. Именно на этой внешней мембране и расположены эндотоксины (липополисахариды). Молекулы эндотоксина обеспечивают структурную целостность, отвечают за многие физиологические функции, в том числе определяют патогенные и антигенные свойства бактерий. Структурно молекула эндотоксина делится на три части – Липид А , Кор и О-специфическую цепь .


О-специфическая цепь Кор Липид А
Липид А состоит из дисахарида, фосфата и жирных кислот. Жирные кислоты, входящие в состав Липида А, могут быть насыщенными и ненасыщенными. Наиболее часто в состав Липида А входят кислоты: пальмитиновая, лауриновая, глутаминовая, меристиновая. Участок Липида А является наиболее константным участком молекулы ЛПС, и его строение схоже у многих бактерий.
О-специфическая цепь липополисахаридов построена из повторяющихся олигосахаридов. Наиболее распространенными сахарами, входящими в состав О-специфической цепи, являются глюкоза, галактоза, рамноза. Этот участок молекулы придает ей гидрофильные свойства, благодаря которым ЛПС хорошо растворимы в воде. Полисахаридная часть является наиболее вариабельной частью молекулы ЛПC. Часто этот фрагмент молекулы называют О-антигеном, так как именно он отвечает за антигенную активность грамотрицательных бактерий.
Кор - центральная часть молекулы, связывающая О-антиген с Липидом А. Формально структура кора подразделяется на внешнюю и внутреннюю части. В состав внутренней части кора обычно входят остатки L-глицеро-О-манногептозы и 2-кето-3-дезоксиоктоновой кислоты (КДО). КДО содержит 8 атомов углерода и в природе практически нигде больше не встречается.
Кроме липополисахаридов в состав внешней стенки грамотрицательных бактерий входят и белки (внешняя мембрана на ¾ состоит из ЛПС, и только ¼ приходится на белковые компоненты). Эти белки вместе с ЛПС образуют белково-липополисахаридные комплексы разного размера и молекулярной массы. Именно эти комплексы и называются бактериальными эндотоксинами. Очищенные препараты, которые используются в качестве стандартов, лишены пептидных фрагментов и представляют собой чистый препарат липополисахарида. Тем не менее, термин «бактериальные эндотоксины» применяется с равным успехом и к естественным эндотоксинам, оказавшимся в растворе в результате разрушения бактерий, и к чистым препаратам ЛПС.
На внешней стенке одной грамотрицательной бактерии может содержаться до 3,5 млн. молекул ЛПС. После ее гибели все они оказываются в растворе. Эндотоксины грамотрицательных бактерий остаются биологически активными молекулами и после гибели бактерий. Молекула эндотоксина температуростабильна и легко выдерживает цикл стерилизации в автоклаве. Малые размеры молекул эндотоксинов позволяют им легко проходить через мембраны, используемые для стерилизации растворов (0,22 мкм). Поэтому эндотоксины могут присутствовать в готовых лекарственных формах, даже произведенных в асептических условиях и прошедших финишную стерилизацию.
Бактериальные эндотоксины являются исключительно активными (сильными) пирогенами. Для развития лихорадочного приступа достаточно присутствия бактериальных эндотоксинов в инфузионном растворе в концентрации 1 нг/мл (около 10 ЕЭ/мл). Другие пирогены менее активны, и для развития пирогенного ответа их концентрация должна быть в 100-1000 раз больше. Обычно термины «пирогены» и «эндотоксины» употребляются как синонимы и, хотя не все пирогены являются эндотоксинами, наиболее значимыми являются именно эндотоксины грамотрицательных бактерий.

Эндотоксины имеются только у грамотрицательных бактерий. Они представлены липополисахаридами и связанными с ними белками. Особенность эндотоксинов в том, что они термостабильны и высвобождаются из бактериальных клеток после их разрушения. Эндотоксины, в отличие от экзотоксинов, не обладают специфичностью действия. Их токсичность и пирогенность обусловлены липидом А, входящим в состав ЛПС и имеющим сходную структуру у разных грамотрицательных бактерий. Пирогенное действие эндотоксинов не связано с их непосредственным действием на терморегулирующие центры головного мозга. Они индуцируют выброс какого-то пирогенного вещества из полиморфно-ядерных лейкоцитов. Эндотоксины являются воспалитель­ными агентами; они увеличивают проницаемость капилляров и оказывают разруша­ющее действие на клетки. Их воспалительное и пирогенное действие неспецифично. Многообразие проявлений отравления эндотоксином обусловлено не только самим ЛПС, но и высвобождением многочисленных биологически активных соединений, синтез которых он индуцирует в организме человека и животных (гистамин, серотонин, простагландины, лейкотриены и др., всего более 20). Эти вещества и обусловливают нарушения в различных органах и тканях.

Все три компонента ЛПС - липид А, ядро полисахарида и его боковая цепочка из повторяющихся cахаров - обладают выраженными антигенными свойствами. ЛПС стимулирует синтез интерферонов, активизирует систему комплемента по классическому пути, оказывает митогенное действие на лимфоциты, а также аллер­генное действие. Его токсические свойства, в отличие от экзотоксинов, не снимают­ся при обработке формалином, и ЛПС не превращается в анатоксин.

Экзотоксины. Их продуцируют как грамположительные, так и грамотрицатель­ные бактерии. У грамположительных бактерий экзотоксины активно секретируются через ЦМ и клеточную стенку в окружающую среду с использованием специальных секретирующих систем. У грамотрицательных бактерий (холерный вибрион, токсигенные кишечные палочки, сальмонеллы) некоторые экзотоксины (энтеротоксины) синтезируются только при определенных условиях непосредственно в инфициро­ванном организме и нередко сохраняются в цитоплазме, освобождаясь из клетки только после ее разрушения.

Все известные бактериальные экзотоксины - белки, среди них есть термола­бильные и термостабильные. С белковой природой экзотоксинов связаны их основ­ные свойства: они обладают высокой силой действия (самые сильные токсины в природе - микробного происхождения), высокой избирательностью и связанной с ней специфичностью действия (картина столбняка у лабораторных животных оди­накова, как при заражении их возбудителем, так и его экзотоксином), которое они проявляют после некоторого латентного периода. Экзотоксины являются сильными антигенами, а некоторые - даже суперантигенами. Они индуцируют образование в организме антител, т. е. антитоксинов, которые нейтрализуют их действие. При обра­ботке формалином экзотоксины обезвреживаются и превращаются в анатоксины. Анатоксины лишены токсических свойств, но сохраняют свою способность индуциро­вать синтез антитоксинов, поэтому широко используются для создания искусственно­го иммунитета против дифтерии, столбняка, ботулизма и других заболеваний.

Рис. Схематическое строение клеточной стенки грамотрицательных бактерий

Грамотрицательные бактерии обладают двуслойной клеточной стенкой, которая окружает цитоплазматическую мембрану. Первый слой - очень тонкая (толщиной 1 нм) нелипидная мембрана, состоящая из пептидогликана. Его называют также гликопептидом или мукопептидом. Это сложный матрикс, содержащий полисахаридные цепи, связанные друг с другом поперечными сшивками из коротких пептидных цепей. Второй слой клеточной стенки - липидная мембрана толщиной 7,5 нм. Именно на этой внешней мембране и расположены эндотоксины (липополисахариды). Молекулы эндотоксина обеспечивают структурную целостность, отвечают за многие физиологические функции, в том числе определяют патогенные и антигенные свойства бактерий.

Структурно молекула эндотоксина делится на три части – Липид А, Кор и О-специфическую цепь (рис. внизу).

О-специфическая цепь липополисахаридов построена из повторяющихся олигосахаридов. Наиболее распространенными сахарами, входящими в состав О-специфической цепи, являются глюкоза, галактоза, рамноза. Этот участок молекулы придает ей гидрофильные свойства, благодаря которым ЛПС хорошо растворимы в воде. Полисахаридная часть является наиболее вариабельной частью молекулы ЛПC. Часто этот фрагмент молекулы называют О-антигеном, так как именно он отвечает за антигенную активность грамотрицательных бактерий

Кор - центральная часть молекулы, связывающая О-антиген с Липидом А. Формально структура кора подразделяется на внешнюю и внутреннюю части. В состав внутренней части кора обычно входят остатки L-глицеро-О-манногептозы и 2-кето-3-дезоксиоктоновой кислоты (КДО). КДО содержит 8 атомов углерода и в природе практически нигде больше не встречается.

Липид А состоит из дисахарида, фосфата и жирных кислот. Участок Липида А является наиболее константным участком молекулы ЛПС, и его строение схоже у многих бактерий.

Кроме липополисахаридов в состав внешней стенки грамотрицательных бактерий входят и белки (внешняя мембрана на ¾ состоит из ЛПС, и только ¼ приходится на белковые компоненты). Эти белки вместе с ЛПС образуют белково-липополисахаридные комплексы разного размера и молекулярной массы. Именно эти комплексы и называются бактериальными эндотоксинами . Очищенные препараты, которые используются в качестве стандартов, лишены пептидных фрагментов и представляют собой чистый препарат липополисахарида. Тем не менее, термин «бактериальные эндотоксины» применяется с равным успехом и к естественным эндотоксинам, оказавшимся в растворе в результате разрушения бактерий, и к чистым препаратам ЛПС.


На внешней стенке одной грамотрицательной бактерии может содержаться до 3,5 млн. молекул ЛПС. После ее гибели все они оказываются в растворе. Эндотоксины грамотрицательных бактерий остаются биологически активными молекулами и после гибели бактерий. Молекула эндотоксина термостабильна и легко выдерживает цикл стерилизации в автоклаве. Малые размеры молекул эндотоксинов позволяют им легко проходить через мембраны, используемые для стерилизации растворов (0,22 мкм). Поэтому эндотоксины могут присутствовать в готовых лекарственных формах, даже произведенных в асептических условиях и прошедших финишную стерилизацию.

Бактериальные эндотоксины являются исключительно активными (сильными) пирогенами. Для развития лихорадочного приступа достаточно присутствия бактериальных эндотоксинов в инфузионном растворе в концентрации 1 нг/мл (см. http://forums. rusmedserv.com/archive/index.php/t-98927.html). Другие пирогены менее активны, и для развития пирогенного ответа их концентрация должна быть в 100-1000 раз больше. Обычно термины «пирогены» и «эндотоксины» употребляются как синонимы и, хотя не все пирогены являются эндотоксинами, наиболее значимыми являются именно эндотоксины грамотрицательных бактерий.

Порообразующие токсины . К ним относят бактериальные токсины, функционирующие посредством вставки в плазматическую мембрану хозяина и формирующие в ней трансмембранные поры, приводящие клетку к лизису. Такие токсины еще называют RTX-семейством из-за наличия в их молекулах большого количества повторов . Механизм их действия хорошо прослеживается на примере альфа-токсина S.aureus, рассматриваемого как прототип олигомеризующегося пороформирующегося цитотоксина

Организация и механизм действия токсической молекулы . Большинство токсинов представляют собой А-В структуру. Эта структура предполагает наличие двух компонентов - В-субъединицы, которая участвует в связывании токсина с рецептором на поверхности клетки хозяина и способствует транспортировке токсина в клетку хозяина; и А-субъединицы - проявляющей энзиматическую (токсическую) активность в клетке хозяина. Структура В-доменов зависит от структуры рецепторов-мишеней, с которыми взаимодействует токсин. А-субъединицы более консервативны чем В, особенно в участках, критических для их ферментативной активности

Рис. Механизм действия бактериальных токсинов

А. Повреждение клеточных мембран альфа-токсином S. aureus. После с ЦПМ клетки, ножка похожего на шампиньон альфа-токсина вставляется в клетку -мишень и вызывает приток, или наоборот, отток из клетки ионов (обозначены как темные и светлые кружки, соответственно). В. Ингибирование белкового синтеза клетки шига-токсином (Stx). Голотоксин, который состоит из энзиматически активной субъединицы (А) входит в клетку через рецептор (Gb3). Затем А-субъединица, обладающая N-гликозидной активностью, отсекает аденозиновый остаток с 28S рибосомальной РНК, что останавливает белковый синтез. С. Примеры бактериальных токсинов, активирующих пути вторичных мессенджеров*. Связывание термостабильного энтеротоксина (ST) с рецептором гуанилатциклазы приводит к увеличению количества ГМФ, который обращает в обратную сторону ток электролитов. Посредством АДФ-рибозилирования или гликозилирования (соответственно), экзоэнзим С3 C. botulinum и токсины A (CdA) и В (CdB) C. difficile, инактивируют небольшие ГТФ-связывающие белки. Цитотоксический некротизирующий фактор (CNF) E. coli и дермонекротический токсин (DNT) рода Bordetella, активируют блокаду эффекторов через дезаминирование.

* ̶ Вторичные посредники (вторичные мессенджеры, англ. second messengers) - это малые сигнальные молекулы, компоненты системы передачи сигнала в клетке.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции