23.07.2021

Координаты нормального вектора прямой. Вычисление нормальных векторов для плоскостей. Вычисление координат векторов



При изучении уравнений прямой линии на плоскости и в трехмерном пространстве мы опираемся на алгебру векторов. При этом особое значение имеют направляющий вектор прямой и нормальный вектор прямой. В этой статье мы подробно рассмотрим нормальный вектор прямой. Начнем с определения нормального вектора прямой, приведем примеры и графические иллюстрации. Следом перейдем к нахождению координат нормального вектора прямой по известным уравнениям прямой, при этом покажем подробные решения задач.

Навигация по странице.

Нормальный вектор прямой – определение, примеры, иллюстрации.

Для понимания материала Вам необходимо иметь четкое представление о прямой линии, о плоскости, а также знать основные определения, связанные с векторами. Поэтому рекомендуем сначала освежить в памяти материал статей прямая на плоскости , прямая в пространстве , представление о плоскости и .

Дадим определение нормального вектора прямой.

Определение.

Нормальный вектор прямой - это любой ненулевой вектор, лежащий на любой прямой перпендикулярной данной.

Из определения нормального вектора прямой понятно, что существует бесконечное множество нормальных векторов данной прямой.

Определение нормального вектора прямой и определение направляющего вектора прямой позволяют заключить, что любой нормальный вектор данной прямой перпендикулярен любому направляющему вектору этой прямой.

Приведем пример нормального вектора прямой.

Пусть на плоскости задана Oxy . Одним из множества нормальных векторов координатной прямой Ox является координатный вектор . Действительно, вектор ненулевой и лежит на координатной прямой Oy , которая перпендикулярна оси Ox . Множество всех нормальных векторов координатной прямой Ox в прямоугольной системе координат Oxy можно задать как .

В прямоугольной системе координат Oxyz в трехмерном пространстве нормальным вектором прямой Oz является вектор . Координатный вектор также является нормальным вектором прямой Oz . Очевидно, что любой ненулевой вектор, лежащий в любой плоскости, перпендикулярной оси Oz , будет нормальным вектором прямой Oz .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям этой прямой.

Если рассматривать прямую в прямоугольной системе координат Oxy , то ей будут соответствовать уравнение прямой на плоскости некоторого вида, а нормальные векторы прямой будут определяться своими координатами (смотрите статью ). При этом встает вопрос: «как найти координаты нормального вектора прямой, когда нам известно уравнение этой прямой»?

Найдем ответ на поставленный вопрос для прямых, заданных на плоскости уравнениями различного вида.

Если прямую линию на плоскости определяет общее уравнение прямой вида , то коэффициенты А и B представляют собой соответствующие координаты нормального вектора этой прямой.

Пример.

Найдите координаты какого-нибудь нормального вектора прямой .

Решение.

Так как прямая задана общим уравнением, то мы сразу можем записать координаты ее нормального вектора – ими являются соответствующие коэффициенты перед переменными x и y . То есть, нормальный вектор прямой имеет координаты .

Ответ:

Одно из чисел A или B в общем уравнении прямой может равняться нулю. Это не должно Вас смущать. Рассмотрим на примере.

Пример.

Укажите любой нормальный вектор прямой .

Решение.

Нам дано неполное общее уравнение прямой. Его можно переписать в виде , откуда сразу видны координаты нормального вектора этой прямой: .

Ответ:

Уравнение прямой в отрезках вида или уравнение прямой с угловым коэффициентом легко приводятся к общему уравнению прямой, откуда и находятся координаты нормального вектора этой прямой.

Пример.

Найдите координаты нормального вектора прямой .

Решение.

От уравнения прямой в отрезках очень легко перейти к общему уравнению прямой: . Следовательно, нормальный вектор этой прямой имеет координаты .

Ответ:

Если прямую определяет каноническое уравнение прямой на плоскости вида или параметрические уравнения прямой на плоскости вида , то координаты нормального вектора получить немного сложнее. Из этих уравнений сразу видны координаты направляющего вектора прямой - . Найти координаты нормального вектора этой прямой позволяет и .

Также можно получить координаты нормального вектора прямой, если привести каноническое уравнение прямой или параметрические уравнения прямой к общему уравнению. Для этого производят следующие преобразования:

Как способ предпочесть – решать Вам.

Покажем решения примеров.

Пример.

Найдите какой-нибудь нормальный вектор прямой .

Решение.

Направляющим вектором прямой является вектор . Нормальный вектор прямой перпендикулярен вектору , тогда и равно нулю: . Из этого равенства, придав n x произвольное ненулевое действительное значение, найдем n y . Пусть n x =1 , тогда , следовательно, нормальный вектор исходной прямой имеет координаты .

Второй способ решения.

Перейдем от канонического уравнения прямой к общему уравнению: . Теперь стали видны координаты нормального вектора этой прямой .

Ответ:

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Определение 1

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у, то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у, перпендикулярной О х. Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Пример 1

Задана прямая вида 2 x + 7 y - 4 = 0 _, найти координаты нормального вектора.

Решение

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты, которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Ответ: 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Пример 2

Указать нормальный вектор для заданной прямой y - 3 = 0 .

Решение

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y - 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Ответ: 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Пример 3

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 - y = 1 .

Решение

Для начала необходимо перейти от уравнения в отрезках x 1 3 - y = 1 к уравнению общего вида. Тогда получим, что x 1 3 - y = 1 ⇔ 3 · x - 1 · y - 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , - 1 .

Ответ: 3 , - 1 .

Если прямая определена каноническим уравнением прямой на плоскости x - x 1 a x = y - y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = (a x , a y) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x - x 1 a x = y - y 1 a y ⇔ a y · (x - x 1) = a x · (y - y 1) ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x - x 1 a x = y - y 1 a y ⇔ a y · x - a x · y + a x · y 1 - a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Пример 4

Найти нормальный вектор заданной прямой x - 2 7 = y + 3 - 2 .

Решение

Из прямой x - 2 7 = y + 3 - 2 понятно, что направляющий вектор будет иметь координаты a → = (7 , - 2) . Нормальный вектор n → = (n x , n y) заданной прямой является перпендикулярным a → = (7 , - 2) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = (7 , - 2) и n → = (n x , n y) запишем a → , n → = 7 · n x - 2 · n y = 0 .

Значение n x – произвольное, следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 - 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x - 2 7 = y + 3 - 2 ⇔ 7 · (y + 3) = - 2 · (x - 2) ⇔ 2 x + 7 y - 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Пример 5

Указать координаты нормального вектора прямой x = 1 y = 2 - 3 · λ .

Решение

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 - 3 · λ ⇔ x = 1 + 0 · λ y = 2 - 3 · λ ⇔ λ = x - 1 0 λ = y - 2 - 3 ⇔ x - 1 0 = y - 2 - 3 ⇔ ⇔ - 3 · (x - 1) = 0 · (y - 2) ⇔ - 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны - 3 , 0 .

Ответ: - 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = (A 1 , B 1 , C 1) и n 2 → = (A 2 , B 2 , C 2) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x - x 1 a x = y - y 1 a y = z - z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = (a x , a y , a z) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = (a x , a y , a z) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов. Но для решения задач нам будет хватать и одного.

Если плоскость задана общим уравнением, то вектор является вектором нормали данной плоскости . Просто до безобразия. Всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости.

Обещанного три экрана ждут, вернёмся к Примеру №1 и выполним его проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке и двум векторам . В результате решения мы получили уравнение . Проверяем:

Во-первых, подставим координаты точки в полученное уравнение:

Получено верное равенство, значит, точка действительно лежит в данной плоскости.

Во-вторых, из уравнения плоскости снимаем вектор нормали: . Поскольку векторы параллельны плоскости, а вектор перпендикулярен плоскости, то должны иметь место следующие факты: . Перпендикулярность векторов легко проверить с помощью скалярного произведения :

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: векторпараллелен плоскости в том и только том случае, когда .

Решим важную задачу, которая имеет отношение и к уроку :

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Принципиально пейзаж выглядит так:

Совершенно понятно, что векторы коллинеарны.

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор, нужнокаждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока Скалярное произведение векторов , наверное, заметили, что координаты единичного вектора– это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному.

Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос.

Уравнение плоскости. Как составить уравнение плоскости?
Взаимное расположение плоскостей. Задачи

Пространственная геометрия не намного сложнее «плоской» геометрии, и наши полёты в пространстве начинаются с данной статьи. Для усвоения темы необходимо хорошо разобраться в векторах , кроме того, желательно быть знакомым с геометрией плоскости – будет много похожего, много аналогий, поэтому информация переварится значительно лучше. В серии моих уроков 2D-мир открывается статьёй Уравнение прямой на плоскости . Но сейчас Бэтмен сошёл с плоского экрана телевизора и стартует с космодрома Байконур.

Начнём с чертежей и обозначений. Схематически плоскость можно нарисовать в виде параллелограмма, что создаёт впечатление пространства:

Плоскость бесконечна, но у нас есть возможность изобразить лишь её кусочек. На практике помимо параллелограмма также прорисовывают овал или даже облачко. Мне по техническим причинам удобнее изображать плоскость именно так и именно в таком положении. Реальные плоскости, которые мы рассмотрим в практических примерах, могут располагаться как угодно – мысленно возьмите чертёж в руки и покрутите его в пространстве, придав плоскости любой наклон, любой угол.

Обозначения : плоскости принято обозначать маленькими греческими буквами , видимо, чтобы не путать их с прямой на плоскости или с прямой в пространстве . Я привык использовать букву . На чертеже именно буква «сигма», а вовсе не дырочка. Хотя, дырявая плоскость, это, безусловно, весьма забавно.

В ряде случаев для обозначения плоскостей удобно использовать те же греческие буквы с нижними подстрочными индексами, например, .

Очевидно, что плоскость однозначно определяется тремя различными точками, не лежащими на одной прямой. Поэтому достаточно популярны трёхбуквенные обозначения плоскостей – по принадлежащим им точкам, например, и т.д. Нередко буквы заключают в круглые скобки: , чтобы не перепутать плоскость с другой геометрической фигурой.

Для опытных читателей приведу меню быстрого доступа :

  • Как составить уравнение плоскости по точке и двум векторам?
  • Как составить уравнение плоскости по точке и вектору нормали?

и мы не будем томиться долгими ожиданиями:

Общее уравнение плоскости

Общее уравнение плоскости имеет вид , где коэффициенты одновременно не равны нулю.

Ряд теоретических выкладок и практических задач справедливы как для привычного ортонормированного базиса, так и для аффинного базиса пространства (если масло - масляное, вернитесь к уроку Линейная (не) зависимость векторов. Базис векторов ). Для простоты будем полагать, что все события происходят в ортонормированном базисе и декартовой прямоугольной системе координат.

А теперь немного потренируем пространственное воображение. Ничего страшного, если у вас оно плохое, сейчас немного разовьём. Даже для игры на нервах нужны тренировки.

В самом общем случае, когда числа не равны нулю, плоскость пересекает все три координатные оси. Например, так:

Ещё раз повторю, что плоскость бесконечно продолжается во все стороны, и у нас есть возможность изобразить только её часть.

Рассмотрим простейшие уравнения плоскостей:

Как понимать данное уравнение? Вдумайтесь: «зет» ВСЕГДА, при любых значениях «икс» и «игрек» равно нулю. Это уравнение «родной» координатной плоскости . Действительно, формально уравнение можно переписать так: , откуда хорошо видно, что нам по барабану, какие значения принимают «икс» и «игрек», важно, что «зет» равно нулю.

Аналогично:
– уравнение координатной плоскости ;
– уравнение координатной плоскости .

Немного усложним задачу, рассмотрим плоскость (здесь и далее в параграфе предполагаем, что числовые коэффициенты не равны нулю). Перепишем уравнение в виде: . Как его понимать? «Икс» ВСЕГДА, при любых значениях «игрек» и «зет» равно некоторому числу . Эта плоскость параллельна координатной плоскости . Например, плоскость параллельна плоскости и проходит через точку .

Аналогично:
– уравнение плоскости, которая параллельна координатной плоскости ;
– уравнение плоскости, которая параллельна координатной плоскости .

Добавим членов: . Уравнение можно переписать так: , то есть «зет» может быть любым. Что это значит? «Икс» и «игрек» связаны соотношением , которое прочерчивает в плоскости некоторую прямую (узнаёте уравнение прямой на плоскости ?). Поскольку «зет» может быть любым, то эта прямая «тиражируется» на любой высоте. Таким образом, уравнение определяет плоскость, параллельную координатной оси

Аналогично:
– уравнение плоскости, которая параллельна координатной оси ;
– уравнение плоскости, которая параллельна координатной оси .

Если свободные члены нулевые, то плоскости будут непосредственно проходить через соответствующие оси. Например, классическая «прямая пропорциональность»: . Начертите в плоскости прямую и мысленно размножьте её вверх и вниз (так как «зет» любое). Вывод: плоскость, заданная уравнением , проходит через координатную ось .

Завершаем обзор: уравнение плоскости проходит через начало координат. Ну, здесь совершенно очевидно, что точка удовлетворяет данному уравнению.

И, наконец, случай, который изображён на чертеже: – плоскость дружит со всеми координатными осями, при этом она всегда «отсекает» треугольник, который может располагаться в любом из восьми октантов.

Линейные неравенства в пространстве

Для понимания информации необходимо хорошо изучить линейные неравенства на плоскости , поскольку многие вещи буду похожи. Параграф будет носить краткий обзорный характер с несколькими примерами, так как материал на практике встречается довольно редко.

Если уравнение задаёт плоскость, то неравенства
задают полупространства . Если неравенство нестрогое (два последних в списке), то в решение неравенства кроме полупространства входит и сама плоскость.

Пример 5

Найти единичный нормальный вектор плоскости .

Решение : Единичный вектор – это вектор, длина которого равна единице. Обозначим данный вектор через . Совершенно понятно, что векторы коллинеарны:

Сначала из уравнения плоскости снимем вектор нормали: .

Как найти единичный вектор? Для того чтобы найти единичный вектор , нужно каждую координату вектора разделить на длину вектора .

Перепишем вектор нормали в виде и найдём его длину:

Согласно вышесказанному:

Ответ :

Проверка: , что и требовалось проверить.

Читатели, которые внимательно изучили последний параграф урока , наверное, заметили, что координаты единичного вектора – это в точности направляющие косинусы вектора :

Отвлечёмся от разобранной задачи: когда вам дан произвольный ненулевой вектор , и по условию требуется найти его направляющие косинусы (см. последние задачи урока Скалярное произведение векторов ), то вы, по сути, находите и единичный вектор, коллинеарный данному. Фактически два задания в одном флаконе.

Необходимость найти единичный вектор нормали возникает в некоторых задачах математического анализа.

С выуживанием нормального вектора разобрались, теперь ответим на противоположный вопрос:

Как составить уравнение плоскости по точке и вектору нормали?

Эту жёсткую конструкцию вектора нормали и точки хорошо знает мишень для игры в дартс. Пожалуйста, вытяните руку вперёд и мысленно выберите произвольную точку пространства, например, маленькую кошечку в серванте. Очевидно, что через данную точку можно провести единственную плоскость, перпендикулярную вашей руке.

Уравнение плоскости, проходящей через точку перпендикулярно вектору , выражается формулой:

Что такое нормаль? Простыми словами, нормаль – это перпендикуляр. То есть, вектор нормали прямой перпендикулярен данной прямой. Очевидно, что у любой прямой их бесконечно много (так же, как и направляющих векторов), причём все векторы нормали прямой будут коллинеарными (сонаправленными или нет – без разницы).

Разборки с ними будут даже проще, чем с направляющими векторами:

Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой.

Если координаты направляющего вектора приходиться аккуратно «вытаскивать» из уравнения, то координаты вектора нормали достаточно просто «снять».

Вектор нормали всегда ортогонален направляющему вектору прямой. Убедимся в ортогональности данных векторов с помощью скалярного произведения:

Приведу примеры с теми же уравнениями, что и для направляющего вектора:

Можно ли составить уравнение прямой, зная одну точку и вектор нормали? Если известен вектор нормали, то однозначно определено и направление самой прямой – это «жёсткая конструкция» с углом в 90 градусов.

Как составить уравнение прямой по точке и вектору нормали?

Если известна некоторая точка , принадлежащая прямой, и вектор нормали этой прямой, то уравнение данной прямой выражается формулой:

Составить уравнение прямой по точке и вектору нормали . Найти направляющий вектор прямой.

Решение: Используем формулу:

Общее уравнение прямой получено, выполним проверку:

1) «Снимаем» координаты вектора нормали с уравнения : – да, действительно, получен исходный вектор из условия (либо должен получиться коллинеарный исходному вектор).

2) Проверим, удовлетворяет ли точка уравнению :

Верное равенство.

После того, как мы убедились в том, что уравнение составлено правильно, выполним вторую, более лёгкую часть задания. Вытаскиваем направляющий вектор прямой:

Ответ:

На чертеже ситуация выглядит следующим образом:

В целях тренировки аналогичная задача для самостоятельного решения:

Составить уравнение прямой по точке и нормальному вектору . Найти направляющий вектор прямой.

Заключительный раздел урока будет посвящен менее распространённым, но тоже важным видам уравнений прямой на плоскости

Уравнение прямой в отрезках.
Уравнение прямой в параметрической форме

Уравнение прямой в отрезках имеет вид , где – ненулевые константы. Некоторые типы уравнений нельзя представить в таком виде, например, прямую пропорциональность (так как свободный член равен нулю и единицу в правой части никак не получить).



Это, образно говоря, «технический» тип уравнения. Обыденная задача состоит в том, чтобы общее уравнение прямой представить в виде уравнения прямой в отрезках . Чем оно удобно? Уравнение прямой в отрезках позволяет быстро найти точки пересечения прямой с координатными осями, что бывает очень важным в некоторых задачах высшей математики.

Найдём точку пересечения прямой с осью . Обнуляем «игрек», и уравнение принимает вид . Нужная точка получается автоматически: .

Аналогично с осью – точка, в которой прямая пересекает ось ординат.

Действия, которые я только что подробно разъяснил, выполняются устно.

Дана прямая . Составить уравнение прямой в отрезках и определить точки пересечения графика с координатными осями.

Решение: Приведём уравнение к виду . Сначала перенесём свободный член в правую часть:

Чтобы получить справа единицу, разделим каждый член уравнения на –11:

Делаем дроби трёхэтажными:

Точки пересечения прямой с координатными осями всплыли на поверхность:

Ответ:

Осталось приложить линеечку и провести прямую.

Легко усмотреть, что данная прямая однозначно определяется красным и зелёным отрезками, отсюда и название – «уравнение прямой в отрезках».

Конечно, точки не так трудно найти и из уравнения , но задача всё равно полезная. Рассмотренный алгоритм потребуется для нахождения точек пересечения плоскости с координатными осями, для приведения уравнения линии второго порядка к каноническому виду и в некоторых других задачах. Поэтому пара прямых для самостоятельного решения:

Составить уравнение прямой в отрезках и определить точки её пересечения с координатными осями.

Решения и ответы в конце. Не забывайте, что при желании всё можно начертить.

Как составить параметрические уравнениЯ прямой?



Параметрические уравнения прямой больше актуальны для прямых в пространстве, но без них наш конспект осиротеет.

Если известна некоторая точка , принадлежащая прямой, и направляющий вектор этой прямой, то параметрические уравнения данной прямой задаются системой:

Составить параметрические уравнения прямой по точке и направляющему вектору

Решение закончилось, не успев начаться:

Параметр «тэ» может принимать любые значения от «минус бесконечности» до «плюс бесконечности», и каждому значению параметра соответствует конкретная точка плоскости. Например, если , то получаем точку .

Обратная задача: как проверить, будет ли точка условия принадлежать данной прямой?

Подставим координаты точки в полученные параметрические уравнения:

Из обоих уравнений следует, что , то есть, система совместна и имеет единственное решение.

Рассмотрим более содержательные задания:

Составить параметрические уравнения прямой

Решение: По условию прямая задана в общем виде. Для того чтобы составить параметрические уравнения прямой, нужно знать её направляющий вектор и какую-нибудь точку, принадлежащую данной прямой.

Найдём направляющий вектор:

Теперь нужно найти какую-нибудь точку, принадлежащую прямой (подойдёт любая), в этих целях общее уравнение удобно переписать в виде уравнения с угловым коэффициентом:

Напрашивается, конечно, точка

Составим параметрические уравнения прямой:

И напоследок небольшая творческая задача для самостоятельного решения.

Составить параметрические уравнения прямой, если известна принадлежащая ей точка и вектор нормали

Задачу можно оформить не единственным способом. Одна из версий решения и ответ в конце.

Решения и ответы:

Пример 2: Решение: Найдём угловой коэффициент:

Уравнение прямой составим по точке и угловому коэффициенту :

Ответ:

Пример 4: Решение: Уравнение прямой составим по формуле:

Ответ:

Пример 6: Решение: Используем формулу:

Ответ : (ось ординат)

Пример 8: Решение : Составим уравнение прямой по двум точкам:

Умножаем обе части на –4:

И делим на 5:

Ответ :

Пример 10: Решение : Используем формулу:

Сокращаем на –2:

Направляющий вектор прямой:
Ответ :

Пример 12:
а) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

б) Решение : Преобразуем уравнение:

Таким образом:

Ответ :

Пример 15: Решение : Сначала составим общее уравнение прямой по точке и вектору нормали :

Умножаем на 12:

Умножаем ещё на 2, чтобы после раскрытия второй скобки избавиться от дроби:

Направляющий вектор прямой:
Параметрические уравнения прямой составим по точке и направляющему вектору :
Ответ :

Простейшие задачи с прямой на плоскости.
Взаимное расположение прямых. Угол между прямыми

Продолжаем рассматривать эти бесконечные-бесконечные прямые.



Как найти расстояние от точки до прямой?
Как найти расстояние между двумя параллельными прямыми?
Как найти угол между двумя прямыми?

Взаимное расположение двух прямых

Рассмотрим две прямые, заданные уравнениями в общем виде:

Тот случай, когда зал подпевает хором. Две прямые могут:

1) совпадать;

2) быть параллельными: ;

3) или пересекаться в единственной точке: .

Пожалуйста, запомните математический знак пересечения , он будет встречаться очень часто. Запись обозначает, что прямая пересекается с прямой в точке .

Как определить взаимное расположение двух прямых?

Начнём с первого случая:

Две прямые совпадают, тогда и только тогда, когда их соответствующие коэффициенты пропорциональны, то есть, существует такое число «лямбда», что выполняются равенства

Рассмотрим прямые и составим три уравнения из соответствующих коэффициентов: . Из каждого уравнения следует, что , следовательно, данные прямые совпадают.

Действительно, если все коэффициенты уравнения умножить на –1 (сменить знаки), и все коэффициенты уравнения сократить на 2, то получится одно и то же уравнение: .

Второй случай, когда прямые параллельны:

Две прямые параллельны тогда и только тогда, когда их коэффициенты при переменных пропорциональны: , но .

В качестве примера рассмотрим две прямые . Проверяем пропорциональность соответствующих коэффициентов при переменных :

Однако совершенно очевидно, что .

И третий случай, когда прямые пересекаются:

Две прямые пересекаются, тогда и только тогда, когда их коэффициенты при переменных НЕ пропорциональны, то есть НЕ существует такого значения «лямбда», чтобы выполнялись равенства

Так, для прямых составим систему:

Из первого уравнения следует, что , а из второго уравнения: , значит, система несовместна (решений нет). Таким образом, коэффициенты при переменных не пропорциональны.

Вывод: прямые пересекаются

В практических задачах можно использовать только что рассмотренную схему решения. Она, кстати, весьма напоминает алгоритм проверки векторов на коллинеарность. Но существует более цивилизованная упаковка:

Выяснить взаимное расположение прямых:

Решение основано на исследовании направляющих векторов прямых:

а) Из уравнений найдём направляющие векторы прямых: .


, значит, векторы не коллинеарны и прямые пересекаются.

б) Найдем направляющие векторы прямых :

Прямые имеют один и тот же направляющий вектор, значит, они либо параллельны, либо совпадают. Тут и определитель считать не надо.

Очевидно, что коэффициенты при неизвестных пропорциональны, при этом .

Выясним, справедливо ли равенство :

Таким образом,

в) Найдем направляющие векторы прямых :

Вычислим определитель, составленный из координат данных векторов:
, следовательно, направляющие векторы коллинеарны. Прямые либо параллельны, либо совпадают.

Коэффициент пропорциональности «лямбда» можно узнать прямо соотношения коллинеарных направляющих векторов . Впрочем, можно и через коэффициенты самих уравнений: .

Теперь выясним, справедливо ли равенство . Оба свободных члена нулевые, поэтому:

Полученное значение удовлетворяет данному уравнению (ему удовлетворяет вообще любое число).

Таким образом, прямые совпадают.

Как построить прямую, параллельную данной?

Прямая задана уравнением . Составить уравнение параллельной прямой, которая проходит через точку .

Решение: Обозначим неизвестную прямую буквой . Что о ней сказано в условии? Прямая проходит через точку . А если прямые параллельны, то очевидно, что направляющий вектор прямой «цэ» подойдёт и для построения прямой «дэ».

Вытаскиваем направляющий вектор из уравнения :

Геометрия примера выглядит незатейливо:

Аналитическая же проверка состоит в следующих шагах:

1) Проверяем, что у прямых один и тот же направляющий вектор (если уравнение прямой не упрощено должным образом, то векторы будут коллинеарны).

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Аналитическую проверку в большинстве случаев легко выполнить устно. Посмотрите на два уравнения, и многие из вас быстро определят параллельность прямых безо всякого чертежа.

Примеры для самостоятельного решения сегодня будут творческими.

Составить уравнение прямой, проходящей через точку , параллельную прямой , если

Самый короткий путь – в конце.

Как найти точку пересечения двух прямых?

Если прямые пересекаются в точке , то её координаты являются решением системы линейных уравнений

Как найти точку пересечения прямых? Решить систему.

Вот вам и геометрический смысл системы двух линейных уравнений с двумя неизвестными – это две пересекающиеся (чаще всего) прямые на плоскости.

Найти точку пересечения прямых

Решение: Существуют два способа решения – графический и аналитический.

Графический способ состоит в том, чтобы просто начертить данные прямые и узнать точку пересечения непосредственно из чертежа:

Вот наша точка: . Для проверки следует подставить её координаты в каждое уравнение прямой, они должны подойти и там, и там. Иными словами, координаты точки являются решением системы . По сути, мы рассмотрели графический способ решения системы линейных уравнений с двумя уравнениями, двумя неизвестными.

Графический способ, конечно, неплох, но существует заметные минусы. Нет, дело не в том, что так решают семиклассники, дело в том, что на правильный и ТОЧНЫЙ чертёж уйдёт время. Кроме того, некоторые прямые построить не так-то просто, да и сама точка пересечения может находиться где-нибудь в тридесятом царстве за пределами тетрадного листа.

Поэтому точку пересечения целесообразнее искать аналитическим методом. Решим систему:

Для решения системы использован метод почленного сложения уравнений.

Проверка тривиальна – координаты точки пересечения должны удовлетворять каждому уравнению системы.

Найти точку пересечения прямых в том случае, если они пересекаются.

Это пример для самостоятельного решения. Задачу удобно разбить на несколько этапов. Анализ условия подсказывает, что необходимо:
1) Составить уравнение прямой .
2) Составить уравнение прямой .
3) Выяснить взаимное расположение прямых .
4) Если прямые пересекаются, то найти точку пересечения.

Разработка алгоритма действий типична для многих геометрических задач, и я на этом буду неоднократно заострять внимание.

Полное решение и ответ в конце:

Перпендикулярные прямые. Расстояние от точки до прямой.
Угол между прямыми

Как построить прямую, перпендикулярную данной?

Прямая задана уравнением . Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: По условию известно, что . Неплохо бы найти направляющий вектор прямой . Поскольку прямые перпендикулярны, фокус прост:

Из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:

Аналитическая проверка решения:

1) Из уравнений вытаскиваем направляющие векторы и с помощью скалярного произведения векторов приходим к выводу, что прямые действительно перпендикулярны: .

Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению .

Проверку, опять же, легко выполнить устно.

Найти точку пересечения перпендикулярных прямых , если известно уравнение и точка .

Это пример для самостоятельного решения. В задаче несколько действий, поэтому решение удобно оформить по пунктам.

Расстояние от точки до прямой

Расстояние в геометрии традиционно обозначают греческой буквой «р», например: – расстояние от точки «м» до прямой «д».

Расстояние от точки до прямой выражается формулой

Найти расстояние от точки до прямой

Решение: всё что нужно, это аккуратно подставить числа в формулу и провести вычисления:

Ответ:

Выполним чертёж:

Найденное расстояние от точки до прямой – это в точности длина красного отрезка. Если оформить чертёж на клетчатой бумаге в масштабе 1 ед. = 1 см (2 клетки), то расстояние можно измерить обыкновенной линейкой.

Рассмотрим ещё одно задание по этому же чертежу:

Как построить точку, симметричную относительно прямой?

Задача состоит в том, чтобы найти координаты точки , которая симметрична точке относительно прямой . Предлагаю выполнить действия самостоятельно, однако обозначу алгоритм решения с промежуточными результатами:

1) Находим прямую , которая перпендикулярна прямой .

2) Находим точку пересечения прямых: .


В геометрии за угол между двумя прямыми принимается МЕНЬШИЙ угол, из чего автоматически следует, что он не может быть тупым. На рисунке угол, обозначенный красной дугой, не считается углом между пересекающимися прямыми. А считается таковым его «зелёный» сосед или противоположно ориентированный «малиновый» угол .

Если прямые перпендикулярны, то за угол между ними можно принимать любой из 4-х углов.

Чем отличаются углы ? Ориентацией. Во-первых, принципиально важным является направление «прокрутки» угла. Во-вторых, отрицательно ориентированный угол записывается со знаком «минус», например, если .

Зачем я это рассказал? Вроде бы можно обойтись и обычным понятием угла. Дело в том, что в формулах, по которым мы будем находить углы, запросто может получиться отрицательный результат, и это не должно застать вас врасплох. Угол со знаком «минус» ничем не хуже, и имеет вполне конкретный геометрический смысл. На чертеже для отрицательного угла следует обязательно указывать стрелкой его ориентацию (по часовой стрелке).

Исходя из вышесказанного, решение удобно оформить в два шага:

1) Вычислим скалярное произведение направляющих векторов прямых:
, значит, прямые не перпендикулярны.

2) Угол между прямыми найдём по формуле:

С помощью обратной функции легко найти и сам угол. При этом используем нечётность арктангенса:

Ответ:

В ответе указываем точное значение, а также приближённое значение (желательно и в градусах, и в радианах), вычисленное с помощью калькулятора.

Ну, минус, так минус, ничего страшного. Вот геометрическая иллюстрация:

Неудивительно, что угол получился отрицательной ориентации, ведь в условии задачи первым номером идёт прямая и «открутка» угла началась именно с неё.

Есть и третий способ решения. Идея состоит в том, чтобы вычислить угол между направляющими векторами прямых:

Здесь уже речь идёт не об ориентированном угле, а «просто об угле», то есть результат заведомо будет положительным. Загвоздка состоит в том, что может получиться тупой угол (не тот, который нужен). В этом случае придётся делать оговорку, что угол между прямыми – это меньший угол, и из «пи» радиан (180-ти градусов) вычитать получившийся арккосинус.

Найти угол между прямыми .

Это пример для самостоятельного решения. Попробуйте решить его двумя способами.

Решения и ответы:

Пример 3: Решение: Найдём направляющий вектор прямой :

Уравнение искомой прямой составим по точке и направляющему вектору

Примечание: здесь первое уравнение системы умножено на 5, затем из 1-го уравнения почленно вычтено 2-ое.
Ответ:


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции