09.08.2020

Какие химические элементы входят в состав крови. Основные элементы состава крови. Электролитный состав плазмы крови человека


Кровь относится к опорно-трофическим тканям. Она состоит из клеток - форменных элементов и межклеточного вещества - плазмы. К форменным элементам крови принадлежат эритроци­ты, лейкоциты и тромбоциты. Плазма крови представляет собой жидкость. Кровь - единственная ткань организма, где межкле­точное вещество является жидкостью.

Чтобы отделить форменные элементы от плазмы, кровь надо предохранить от свертывания и отцентрифугировать. Формен­ные элементы как более тяжелые осядут, а над ними будет слой прозрачной, слегка опалесцирующей жидкости желтого цвета - плазма крови.

Если объем крови принять за 100 %, то форменные элементы составляют около 40...45%, а плазма - 55...60 %. Объем формен­ных элементов в крови, главным образом эритроцитов, называет­ся гематокритной величиной или гематокритом. Гематокрит может быть выражен в процентах (40...45 %) или в литрах эритроцитов, находящихся в 1 л крови (0,40...0,45 л/л).

Когда животное давно не поили или оно потеряло много жид­кости (сильное потение, понос, обильная рвота), то гематокрит-ная величина увеличивается. В этом случае говорят о «сгущении» крови. Такое состояние неблагоприятно для организма, так как существенно увеличивается сопротивление крови при ее движе­нии, что заставляет сердце сильнее сокращаться. В порядке ком­пенсации происходит переход воды из тканевой жидкости в кровь, уменьшается ее выведение почками и, как следствие, воз­никает жажда. Уменьшение гематокрита чаще имеет место при за­болеваниях - при понижении образования эритроцитов, усилен­ном их разрушении или после кровопотери.

Химический состав крови. Плазма крови содержит 90...92 % воды и 8... 10 % сухого остатка. Сухой остаток составляют белки, липиды, углеводы, промежуточные и конечные продукты их об­мена, минеральные вещества, гормоны, витамины, ферменты и другие биологически активные вещества. Важно отметить, что, несмотря на постоянный обмен веществ между кровью и тканя­ми, состав плазмы крови существенно не меняется. Очень узкие границы колебаний содержания общего белка, глюкозы, мине­ральных веществ - электролитов. Поэтому самые незначитель­ные отклонения в их уровне, выходящие за пределы физиологи­ческих границ, приводят к тяжелым нарушениям в работе орга­низма. Другие составные компоненты крови - липиды, амино­кислоты, ферменты, гормоны и пр. - могут иметь более широкий спектр колебаний. В состав крови также входят кислород и ди­оксид углерода.

Рассмотрим физиологическое значение отдельных веществ, со­держащихся в крови.


Белки. Белки крови состоят из нескольких фракций, кото­рые можно разделить различными способами, например методом электрофореза. В каждую фракцию входит большое количество белков, обладающих специфическими функциями.



Альбумины. Образуются в печени, имеют сравнительно с дру­гими белками небольшую молекулярную массу. В организме вы­полняют трофическую, или питательную, функцию, являясь ис­точником аминокислот, и транспортную, участвуя в переносе и связывании в крови жирных кислот, пигментов желчи, некото­рых катионов.

Глобулины. Синтезируются в печени, а также различными клетками - лейкоцитами, плазмоцитами. Молекулярная масса глобулинов больше, чем альбуминов. Глобулиновую фракцию белков дополнительно можно разделить на три группы - альфа-, бета- и гамма-глобулины. Альфа- и бета-глобулины участвуют в транспорте холестерина, фосфолипидов, стероидных гормонов, катионов. Гамма-глобулиновая фракция включает в себя различ­ные антитела.

Отношение количества альбуминов к глобулинам называется белковым коэффициентом. У лошадей и крупного рогатого скота глобулинов больше, чем альбуминов, а у свиней, овец, коз, собак, кроликов и у человека преобладают альбумины. Такая особенность влияет на некоторые физико-химические свойства крови.

Белки играют большую роль в свертывании крови. Так, фиб­риноген, относящийся к глобулиновой фракции, во время свер­тывания переходит в нерастворимую форму - фибрин и стано­вится основой кровяного сгустка (тромба). Белки могут образо­вывать комплексы с углеводами (гликопротеины) и с липидами (л ипопротеины).

Независимо от функции каждого белка, а их в плазме крови насчитывают до 100, они в совокупности определяют вязкость крови, создают в ней определенное коллоидное давление, участву­ют в поддержании постоянного рН крови.

Физиологические колебания количества общего белка крови связаны с возрастом, полом, продуктивностью животных, а также с условиями их кормления и содержания. Так, у новорожденных животных в крови отсутствуют гамма-глобулины (естественные антитела), они поступают в организм с первыми порциями моло­зива. С возрастом в крови увеличивается содержание глобулинов и одновременно снижается уровень альбуминов. При высокой мо­лочной продуктивности коров содержание белков в крови повы­шается. После вакцинации животных увеличение содержания бел­ков в крови происходит за счет иммуноглобулинов. У здоровых животных общее количество белка в крови составляет 60...80 г/л, или 6...8 г/100 мл.

Как известно, характерной особенностью химического состава белков является наличие азота, поэтому многие методы определе-


ния количества белков в крови и тканях основаны на определении концентрации белкового азота. Однако азот присутствует и во многих других органических веществах, являющихся продуктами распада белков, - это аминокислоты, мочевая кислота, мочевина, креатин, индикан и многие другие. Совокупный азот всех этих ве­ществ (за исключением белкового азота) называется остаточным, или небелковым, азотом. Его количество в плазме составляет 0,2...0,4 г /л. Остаточный азот в крови определяют с целью оценки состояния белкового обмена: при усиленном распаде белка в орга­низме содержание остаточного азота возрастает.

Л и п и д ы. Липиды крови подразделяют на нейтральные липи-ды, состоящие из глицерина и жирных кислот (моно-, ди- и тригли-цериды), и сложные - холестерин, его производные и фосфолипи-ды. В крови присутствуют также свободные жирные кислоты. Со­держание общих липидов в крови может изменяться в больших пределах (например, у коров в норме колебание липидов в пределах 1...10 г/л). При увеличении содержания в крови липидов (например, после приема жирной пищи) плазма начинает заметно опалесциро-вать, мутнеет, приобретает молочный оттенок, а у кур при отстаива­нии плазмы жир может всплывать в виде толстой капли.

Углеводы. Углеводы крови представлены главным образом глюкозой. Но содержание глюкозы определяют не в плазме, а в цельной крови, так как глюкоза частично адсорбируется на эри­троцитах. Концентрация глюкозы в крови у млекопитающих удер­живается в очень узких границах: у животных с однокамерным же­лудком 0,8..Л,2 г/л, а с многокамерным желудком 0,04...0,06 г/л. У птиц содержание глюкозы в крови выше, что объясняется осо­бенностями гормональной регуляции углеводного обмена.

Кроме глюкозы в плазме крови содержатся и некоторые другие углеводы - гликоген, фруктоза, а также продукты промежуточно­го обмена углеводов и липидов - молочная, пировиноградная, ук­сусная и другие кислоты, кетоновые тела. В крови жвачных жи­вотных присутствует больше летучих жирных кислот (ЛЖК), чем у животных других видов, это обусловлено особенностями рубцово-го пищеварения. В форменных элементах крови имеется неболь­шое количество гликогена.

Как уже было сказано, в крови содержатся различные биологи­чески активные вещества - ферменты, гормоны, медиаторы и др.

Минеральный состав крови. Неорганические ве­щества в крови могут находиться как в свободном состоянии, т. е. в виде анионов и катионов, так и в связанном, входя в струк­туру органических веществ. Больше всего в крови катионов на­трия, калия, кальция, магния, анионов хлора, бикарбонатов, фос­фатов, гидроксильной группы ОН". В крови также содержатся йод, железо, медь, кобальт, марганец и другие макро- и микроэле­менты. Общее содержание минеральных веществ в крови постоян­ная величина (до 10 г/л) для каждого вида животного.


Следует иметь в виду, что концентрация отдельных ионов в плазме крови и в форменных элементах неодинакова. Так, преиму­щественно в плазме находятся натрий, кальций, хлор, бикарбона­ты, в эритроцитах же более высокая концентрация калия, магния и железа. Однако и в эритроцитах, и в лейкоцитах, и в плазме кро­ви уровень концентрации отдельных ионов (ионограмма) посто­янный, что поддерживается непрерывным активным и пассивным транспортом ионов через полупроницаемые мембраны клеток.

Физиологические колебания содержания минеральных веществ в крови обусловлены питанием, возрастом, продуктивностью животных и их физиологическим состоянием. От их содержа­ния зависят такие свойства крови, как плотность, рН, осмоти­ческое давление.

Кровь ‒ это биологическая жидкость, которая обеспечивает органы и ткани питательными веществами и оксигеном. Вместе с лимфой она образует систему циркулирующих в организме жидкостей. Выполняет ряд жизненно важных функций: питательную, выделительную, защитную, дыхательную, механическую, регуляторную, терморегулирующую.

Состав крови человека с возрастом существенно изменяется. Следует сказать, что у детей очень интенсивный обмен веществ, поэтому в их организме ее значительно больше приходится на 1 кг массы тела по сравнению с взрослыми. В среднем у взрослого человека около пяти-шести литров данной биологической жидкости.

В состав крови входит плазма (жидкая часть) и лейкоциты, тромбоциты). От концентрации красных кровяных телец зависит ее цвет. Плазма, лишенная белка (фибриногена), называется сывороткой крови. Эта биологическая жидкость имеет слабощелочную реакцию.

Биохимический состав крови - буферные системы. Основными кровяными буферами являются гидрокарбонатная (7% общей массы), фосфатная (1%), белковая (10%), гемоглобиновая и оксигемоглобиновая (до 81%), а также кислотная (около 1%) системы. В плазме преобладают гидрокарбонатная, фосфатная, белковая и кислотная, в эритроцитах ‒ гидрокарбонатная, фосфатная, в гемоглобиновых - оксигемоглобиновая и кислотная. Состав кислотной буферной системы представлен органическими кислотами (ацетатная, лактатная, пировиноградная и т.д.) и их солями с сильными основаниями. Наибольшее значение имеют гидрокарбонатная и гемоглобиновая буферные системы.

Химический состав характеризуется постоянством химического состава. Плазма составляет 55-60% общего объема крови и на 90 % состоит из воды. составляют органические (9%) и минеральные (1%) вещества. Основными органическими веществами являются белки, большинство которых синтезируются в печени.

Белковый состав крови. Общее содержание белков в крови млекопитающих колеблется в пределах от 6 до 8 %. Известно около ста белковых компонентов плазмы. Условно их можно разделить на три фракции: альбумины, глобулины и фибриноген. Белки плазмы, которые остались после удаления фибринагена, называют сывороточными белками крови.

Альбумины принимают участие в транспортировке многих питательных и (углеводов, жирных кислот, витаминов, неорганических ионов, билирубина). Участвуют в регуляции Сывороточные глобулины разделяют на три фракции альфа-, бета- и гамма-глобулины. Глобулины транспортируют жирные кислоты, стероидные гормоны, являются иммунными телами.

Углеводный состав крови. В плазме содержатся монозы (глюкоза, фруктоза), гликоген, глюкозамин, фосфаты моноз и другие продукты промежуточного обмена углеводов. Основная часть углеводов представлена глюкозой. Глюкоза и другие монозы в плазме крови находятся в свободном и связанном с белками состояниях. Содержание связанной глюкозы достигает 40-50% общего содержания углеводов. Среди продуктов промежуточного обмена углеводов выделяют лактатную кислоту, содержание которой резко возрастает после тяжелых физических нагрузок.

Концентрация глюкозы может изменяться при многих патологических состояниях. Явление гипергликемии характерно для сахарного диабета, гипертиреоза, шока, наркоза, лихорадки.

Липидный состав крови. В плазме содержится до 0,7 % и больше липидов. Липиды находятся в свободном и связанном с белками состояниях. Концентрация липидов в плазме изменяется при патологии. Так, при туберкулезе она может достигать 3-10%.

Газовый состав крови. Данная биожидкость содержит оксиген (кислород), диоксид карбона и нитроген в свободном и связанных состояниях. Так, например, около 99,5-99,7% оксигена связано с гемоглобином, а 03-0,5 % находится в свободном состоянии.

Химический состав крови , циркулирующей в теле животного, постоянен в результате динамического равновесия между количеством веществ, поступающих в кровь и выделяемых ею.

Количество воды в крови крупного рогатого скота с возрастом уменьшается. Наоборот, содержание общего азота у взрослого скота выше, чем у телят. Увеличение содержания общего азота отмечается с повышением упитанности крупного рогатого скота. Аналогично увеличивается и содержание сухого остатка в крови. Наибольшее количество белка в крови крупного рогатого скота установлено в возрасте до 3 лет, в дальнейшем оно снижается и достигает минимума к 12 годам.

Минеральный состав крови довольно разнообразен. При этом наибольшее количество неорганических веществ содержится в форменных элементах. Так, общее содержание минеральных веществ в крови составляет 0,9 %, а в форменных элементах 1,2 %.

В состав крови входят также витамины и гормоны. К витаминам относятся тиамин (B 1), рибофлавин (В 2), аскорбиновая кислота (С), антиксерофтальмический (А), антирахитический (D), биотин (Н), пантотеновая кислота (В 3), токоферол (Е), антигеморрагический (К), кобаламин (В 12).

Гормоны — это физиологически активные вещества, являющиеся специфическими продуктами обмена веществ, выделяемыми в кровь и тканевую жидкость железами внутренней секреции. Так, в крови обнаружены инсулин, адреналин, гормоны гипофиза, а также половых и молочных желез.

Из многочисленных ферментов следует отметить. каталазу, регулирующую окислительно-восстановительные процессы, амилазу, расщепляющую крахмал, липазу, расщепляющую жиры, а также протеолитические ферменты, под действием которых происходит распад белков, - пепсин, трипсин и химотрипсин.

Постоянство реакции среды крови поддерживается благодаря наличию в ней буферных систем - карбонатной, фосфатной и белковой. Карбонатный буфер поддерживает на постоянном уровне (1/20) соотношение угольной кислоты к ее натриевой соли, а фосфатный буфер - отношение кислого фосфата к щелочному (1/4). Белковые буферные системы включаются в работу по поддержанию pH среды на постоянном уровне после того, как себя исчерпают фосфатный и карбонатный буферы.

Важно знать химический состав плазмы и форменных элементов.

Большую часть сухого остатка плазмы и форменных элементов крови составляют белки, которые представляют собой высокомолекулярные азотистые вещества, отличающиеся разнообразием свойств. При определенных условиях белки способны распадаться на аминокислоты, которые подразделяют на незаменимые, условно незаменимые и заменимые.

Незаменимыми называют аминокислоты, которые не могут синтезироваться в организме и должны поступать с пищей. К ним относятся валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин. Отсутствие в корме хотя бы одной из перечисленных аминокислот приводит к нарушению обмена, приостановке роста и, в конце концов, к гибели животного. Белки, содержащие все незаменимые аминокислоты, называются полноценными .

К условно незаменимым аминокислотам относятся аргинин, гистидин и тирозин. Их образование в животном организме происходит медленно и не всегда удовлетворяет его потребность.

Все белки подразделяют на простые (белки-протеины), которые при гидролизе распадаются только на аминокислоты, и сложные (белки-протеиды), которые при гидролизе, кроме аминокислот, выделяют и небелковую группу. К простым белкам относятся альбумины, глобулины, к сложным - гемоглобин.

По форме частиц белки подразделяют на фибриллярные и глобулярные. К фибриллярным белкам относятся преимущественно белки, входящие в состав шкуры, кости, копыт, волоса, т. е. выполняющие структурные функции организма. Глобулярные белки выполняют физиологические функции. К ним относятся альбумин, глобулин и миозин.

Основными белками плазмы крови являются сывороточные альбумины, сывороточные глобулины и фибриноген.

Сывороточные альбумины участвуют в регуляции кислотно-щелочного равновесия и играют важную роль в транспортировке различных соединений.

Сывороточные глобулины также участвуют в переносе различных веществ. Они представляют собой смесь альфа-, бета- и гамма-глобулинов, причем гамма-глобулин способен реагировать с чужеродными белками — антигенами. Поэтому они получили название антител. Таким образом, гамма-глобулин является носителем защитных свойств организма.

Фибриноген содержится в плазме и отсутствует в сыворотке крови. Он участвует в свертывании крови, превращаясь в фибрин.

Перечисленные белки плазмы являются полноценными, так как содержат весь комплекс незаменимых аминокислот. Наиболее ценным из них является фибриноген, в котором содержится больше триптофана (3,5%), лизина (9%) и метионина (2,6%) по сравнению с другими белками плазмы.

Основным белком форменных элементов является гемоглобин. Это сложный белок, состоящий из белковой части глобина и небелковой (простетической) части - гема . Гемоглобин является основной частью эритроцитов и содержится в них в количестве 30-41%. Гемоглобин осуществляет перенос кислорода к клеткам, где протекают интенсивные процессы биологического окисления. Концентрация его в крови различных животных неодинакова вследствие значительных различий в количестве эритроцитов и их величине.

Молекула гемоглобина состоит из четырех субъединиц. Каждая субъединица соединена с гемом. Гем является комплексным соединением протопорфирина IX и железа. Железо в теме находится в центральном ядре и связано с азотом пирроловых колец двумя главными и двумя добавочными валентностями. В процессе окисления: двухвалентное железо переходит в трехвалентное.

Гем у различных животных по своему строению одинаков. Видовые различия гемоглобинов крови различных животных обусловлены ее белковой частью - глобином, отличающимся по сочетанию аминокислот в молекуле. Гем является нестойким соединением. Отщепляясь от глобина, он легко окисляется с образованием гемина, в молекуле

которого железо трехвалентно. При обработке растворов гемоглобина разведенными минеральными щелочами и кислотами выделяется окисленная форма гемагематин. В присутствии уксусной кислоты и поваренной соли гем окисляется и выделяется в виде хлоргемина, а при обработке концентрированной серной кислотой — гематопорфирина.

Нативный глобин можно получить при осторожном прибавлении к раствору гемоглобина соляной или щавелевой кислот. Отщепляемый при этом гемин извлекается диэтиловым эфиром, а глобин осаждается в избытке ацетона или осаждением поваренной солью. Этот метод используют для получения неокрашенного белка глобина из гемоглобина.

В результате окисления тема происходит его обесцвечивание, что имеет важное практическое значение для расширения сферы использования крови и форменных элементов на пищевые цели. Метод окисления гемоглобина крови и форменных элементов с помощью перекиси водорода в присутствии фермента каталазы широко используют на предприятиях мясной промышленности для получения сухой белковой смеси и ее применения в производстве различных мясопродуктов, а также в хлебопечении и производстве кондитерских изделий.

Из приведенных данных видно, что гемоглобин из-за отсутствия аминокислоты изолейцин нельзя отнести к полноценным белкам. Однако по наличию триптофана, метионина данный белок превосходит сывороточный альбумин, а по содержанию лизина - фибриноген и сывороточный глобулин. Все это позволяет сделать вывод о целесообразности его использования в сочетании с другими белками при производстве пищевой и кормовой продукции.

Наряду с белковыми веществами в состав крови и ее фракций входят небелковые азотистые и безазотистые вещества, минеральные вещества, пигменты, витамины, липиды.

К азотистым небелковым веществам относятся мочевина, аммиак, аминокислоты, креатин, креатинин, мочевая кислота, пурины и другие соединения. Безазотистые вещества включают в основном углеводы: глюкозу, фруктозу, гликоген, а также молочную и пировиноградную кислоты.

К минеральным веществам относятся хлориды натрия, калия, магния, бикарбонат натрия, карбонат кальция, сульфат натрия, фосфат кальция, кислые фосфорнокислые соли калия, натрия и др.

Пигменты крови включают гемоглобин, билирубин, билевердин, липохромы, лютеин, уробилин. Липохромы принадлежат к группе каротиноидов, лютеины — растительные пигменты. Так, красно-желтый цвет сыворотки крови крупного рогатого скота обусловлен наличием в ней значительного количества каротинов и ксантофилов, а желтый цвет сыворотки крови свиней вызван крайне незначительным содержанием в ней указанных пигментов.

Липиды в основном представлены нейтральным жиром и продуктами его распада, а также лецитином, кефалином, холестерином.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В спортивной практике анализ крови используется для оценки влияния на организм спортсмена тренировочных и соревновательных нагрузок, оценки функционального состояния спортсмена и его здоровья. Информация, полученная при исследовании крови, помогает тренеру управлять тренировочным процессом. Поэтому специалист в области физической культуры должен иметь необходимые представления о химическом составе крови и об его изменениях под воздействием физических нагрузок различного характера.

Общая характеристика крови

Объем крови у человека около 5 л, что составляет примерно 1/13 часть от объема или массы тела.

По своему строению кровь является жидкой тканью и подобно любой ткани состоит из клеток и межклеточной жидкости.

Клетки крови носят название форменные элементы . К ним относятся красные клетки (эритроциты), белые клетки (лейкоциты) и кровяные пластинки (тромбоциты). На долю клеток приходится около 45 % от объема крови.

Жидкая часть крови называется плазмой . Объем плазмы составляет соответственно примерно 55 % от объема крови. Плазма крови, из которой удален белок фибриноген, называется сывороткой .

Биологические функции крови

Основными функциями крови являются следующие:

1. Транспортная функция . Эта функция обусловлена тем, что кровь постоянно перемещается по кровеносным сосудам и переносит растворенные в ней вещества. Можно выделить три разновидности этой функции.

Трофическая функция . С кровью ко всем органам доставляются вещества, необходимые для обеспечения в них метаболизма (источники энергии, строительный материал для синтезов, витамины, соли и др.).

Дыхательная функция . Кровь участвует в переносе кислорода от легких к тканям и переносе углекислого газа от тканей к легким.

Выделительная функция (экскреторная). С помощью крови конечные продукты метаболизма транспортируются из клеток тканей к выделительным органам с последующим их удалением из организма.

2. Защитная функция . Эта функция, прежде всего, заключается в обеспечении иммунитета – защиты организма от чужеродных молекул и клеток. К защитной функции также можно отнести способность крови к свертыванию. В этом случае осуществляется защита организма от кровопотери.

3. Регуляторная функция . Кровь участвует в обеспечении постоянства температуры тела, в поддержании постоянства рН и осмотического давления. С помощью крови происходит перенос гормонов – регуляторов метаболизма.

Все перечисленные функции направлены на поддержание постоянства условий внутренней среды организма - гомеостаза (постоянства химического состава, кислотности, осмотического давления, температуры и т.п. в клетках организма).


Химический состав плазмы крови.

Химический состав плазмы крови в покое относительно постоянен. Основные составные компоненты плазмы следующие:

Белки - 6-8 %

Прочие органические

вещества - около 2 %

Минеральные вещества - около 1 %

Белки плазмы крови делятся на две фракции: альбумины и глобулины . Соотношение между альбуминами и глобулинами носит название «альбумино-глобулиновый коэффициент» и равно 1,5 – 2. Выполнение физических нагрузок сопровождается вначале увеличением этого коэффициента, а при очень продолжительной работе он снижается.

Альбумины – низкомолекулярные белки с молекулярной массой около 70 тыс. Да. Они выполняют две основные функции.

Во-первых, благодаря хорошей растворимости в воде эти белки выполняют транспортную функцию, перенося с током крови различные нерастворимые в воде вещества (например, жиры, жирные кислоты, некоторые гормоны и др.).

Во-вторых, вследствие высокой гидрофильности альбумины имеют значительную гидратную (водную) оболочку и поэтому задерживают воду в кровяном русле. Задержка воды в кровяном русле необходима в связи с тем, что содержание воды в плазме крови выше, чем в окружающих тканях, и вода в силу диффузии стремится выйти из кровеносных сосудов в ткани. Поэтому при значительном снижении альбуминов в крови (при голодании, при потере белков с мочой при заболеваниях почек) возникают отёки.

Глобулины – это высокомолекулярные белки с молекулярной массой около 300 тыс. Да. Подобно альбуминам глобулины также выполняют транспортную функцию и способствуют задержке воды в кровяном русле, но в этом они существенно уступают альбуминам. Однако у глобулинов

имеются и очень важные функции. Так, некоторые глобулины являются ферментами и ускоряют химические реакции, протекающие непосредственно в кровяном русле. Еще одна функция глобулинов заключается в их участии в свертывании крови и в обеспечении иммунитета (защитная функция).

Бóльшая часть белков плазмы синтезируется в печени.

Прочие органические вещества (кроме белков) обычно делятся на две группы: азотистые и безазотистые .

Азотистые соединения - это промежуточные и конечные продукты обмена белков и нуклеиновых кислот. Из промежуточных продуктов белкового обмена в плазме крови имеются низкомолекулярные пептиды , аминокислоты , креатин . Конечные продукты метаболизма белков это, прежде всего, мочевина (её концентрация в плазме крови довольно высокая – 3,3-6,6 ммоль/л), билирубин (конечный продукт распада гема ) и креатинин (конечный продукт распада креатинфосфата).

Из промежуточных продуктов обмена нуклеиновых кислот в плазме крови можно обнаружить нуклеотиды , нуклеозиды , азотистые основания . Конечным продуктом распада нуклеиновых кислот является мочевая кислота , которая в небольшой концентрация всегда содержится в крови.

Для оценки содержания в крови небелковых азотистых соединений часто используется показатель «небелковый азот » . Небелковый азот включает азот низкомолекулярных (небелковых) соединений, главным образом перечисленных выше, которые остаются в плазме или сыворотке крови после удаления белков. Поэтому этот показатель также называют «остаточным азотом». Повышение в крови остаточного азота наблюдается при заболеваниях почек, а также при длительной мышечной работе.

К безазотистым веществам плазмы крови относятся углеводы и липиды , а также промежуточные продукты их метаболизма.

Главным углеводом плазмы является глюкоза . Её концентрация у здорового человека в покое и состоянии «натощак» колеблется в узком диапазоне от 3,9 до 6,1 ммоль/л (или 70-110 мг%). Поступает глюкоза в кровь в результате всасывания из кишечника при переваривании пищевых углеводов, а также при мобилизации гликогена печени. Кроме глюкозы в плазме также содержатся в небольших количествах другие моносахариды – фруктоза , галактоза, рибоза , дезоксирибоза и др. Промежуточные продукты углеводного обмена в плазме представлены пировиноградной и молочной кислотами. В покое содержание молочной кислоты (лактата) низкое – 1-2 ммоль/л. Под влиянием физических нагрузок и особенно интенсивных концентрация лактата в крови резко возрастает (даже в десятки раз!).

Липиды представлены в плазме крови жиром , жирными кислотами , фосфолипидами и холестерином . Вследствие нерастворимости в воде все

липиды связаны с белками плазмы: жирные кислоты с альбуминами, жир, фосфолипиды и холестерин с глобулинами. Из промежуточных продуктов жирового обмена в плазме всегда имеются кетоновые тела .

Минеральные вещества находятся в плазме крови в виде катионов (Na + , K + , Ca 2+ , Mg 2+ и др.) и анионов (Сl - , HCO 3 - , H 2 PO 4 - , HPO 4 2- , SO 4 2_ , J - и др.). Больше всего в плазме содержится натрия, калия, хлоридов, бикарбонатов. Отклонения в минеральном составе плазмы крови могут наблюдаться при различных заболеваниях и при значительных потерях воды за счет потоотделения при выполнении физической работы.

Таблица 6. Основные компоненты крови

Компонент Концентрация в тра- диционных единицах Концентрация в единицах СИ
Б е л к и
Общий белок 6-8 % 60-80 г/л
Альбумины 3,5- 4,5 % 35-45 г/л
Глобулины 2,5 - 3,5 % 25-35 г/л
Гемоглобин у мужчин у женщин 13,5-18 % 12-16 % 2,1-2,8 ммол/л 1,9-2,5 ммоль/л
Фибриноген 200-450 мг% 2-4,5 г/л
Небелковые азотистые вещества
Остаточный азот 20-35 мг% 14-25 ммоль/л
Мочевина 20-40 мг% 3,3-6,6 ммоль/л
Креатин 0,2-1 мг% 15-75 мкмоль/л
Креатинин 0,5-1,2 мг% 44-106 мкмоль/л
Мочевая кислота 2-7 мг% 0,12-0,42 ммоль/л
Билирубин 0,5-1 мг% 8,5-17 мкмоль/л
Безазотистые вещества
Глюкоза(натощак) 70-110 мг% 3,9-6,1 ммоль/л
Фруктоза 0,1-0,5 мг% 5,5-28 мкмоль/л
Лактатартериальная кровь венозная кровь 3-7 мг% 5-20 мг% 0,33-0,78 ммоль/л 0,55-2,2 ммоль/л
Кетоновые тела 0,5-2,5 мг% 5-25 мг/л
Липиды общие 350-800 мг% 3,5-8 г/л
Триглицериды 50-150 мг% 0,5-1,5 г/л
Холестерин 150-300 мг% 4-7,8 ммоль/л
Минеральные вещества
Натрий плазма эритроциты 290-350 мг% 31-50 мг% 125-150 ммоль/л 13,4-21,7 ммоль/л
Калийплазма эритроциты 15-20 мг% 310-370 мг% 3,8-5,1 ммоль/л 79,3-99,7 ммоль/л
Хлориды 340-370 мг% 96-104 ммоль/л
Кальций 9-11 мг% 2,2-2,7 ммоль/л

Красные клетки (эритроциты )

Эритроциты составляют основную массу клеток крови. В 1 мм 3 (мкл) крови обычно содержится 4-5 млн. красных клеток. Образуются эритроциты в красном костном мозге, функционируют в кровяном русле и разрушаются, главным образом, в селезенке и в печени. Жизненный цикл этих клеток составляет 110-120 дней.

Эритроциты представляют собой двояковогнутые клетки, лишенные ядер, рибосом и митохондрий. В связи с этим в них не происходят такие процессы как синтез белка и тканевое дыхание. Основным источником энергии для эритроцитов является анаэробный распад глюкозы (гликолиз).

Основным компонентом красных клеток является белок гемоглобин . На его долю приходится 30 % от массы эритроцита или 90 % от сухого остатка этих клеток.


По своему строению гемоглобин является хромопротеидом. Его молекула обладает четвертичной структурой и состоит из четырех субъединиц . Каждая субъединица содержит один полипептид и один гем . Субъединицы отличаются друг от друга только строением полипептидов. Гем представляет собою сложную циклическую структуру из четырех пиррольных колец, содержащую в центре атом двухвалентного железа (Fe 2+):

Основная функция эритроцитов –дыхательная . С участием эритроцитов осуществляется перенос кислорода от легких к тканям и углекислого газа от тканей к легким.

В капиллярах легких парциальное давление кислорода около 100 мм рт. ст. (парциальное давление это часть общего давления смеси газов, приходящаяся на отдельный газ из этой смеси. Например, при атмосферном давлении 760 мм рт. ст. на долю кислорода приходится 152 мм рт. ст., т.е. 1/5 часть, так как в воздухе обычно содержится 20 % кислорода). При таком давлении практически весь гемоглобин связывается с кислородом:

Hb + O 2 ¾® HbO 2

Гемоглобин Оксигемоглобин

Присоединяется кислород непосредственно к атому железа, входящему в состав гема, причем взаимодействовать с кислородом может только двухвалентное (восстановленное) железо. Поэтому различные окислители (например, нитраты, нитриты и т.п.), превращая железо из двухвалентного в трехвалентное (окисленное), нарушают дыхательную функцию крови.

Образовавшийся комплекс гемоглобина с кислородом - оксигемоглобин с током крови переносится в различные органы. Вследствие потребления кислорода тканями парциальное давление его здесь намного меньше, чем в легких. При низком парциальном давлении происходит диссоциация оксигемоглобина:

HbO 2 ¾® Hb + O 2

Степень распада оксигемоглобина зависит от величины парциального давления кислорода: чем меньше парциальное давление, тем больше отщепляется от оксигемоглобина кислорода. Например, в мышцах в состоянии покоя парциальное давление кислорода примерно 45 мм рт. ст. При таком давлении диссоциации подвергается только около 25 % оксигемо-

глобина. При работе умеренной мощности парциальное давление кислорода в мышцах примерно 35 мм рт. ст. и распаду подвергается уже около 50 % оксигемоглобина. При выполнении интенсивных нагрузок парциальное давление кислорода в мышцах снижается до 15-20 мм рт. ст., что вызывает более глубокую диссоциацию оксигемоглобина (на 75 % и более). Такой характер зависимости диссоциации оксигемоглобина от парциального давления кислорода позволяет значительно увеличить снабжение мышц кислородом при выполнении физической работы.

Усиление диссоциации оксигемоглобина также наблюдается при повышении температуры тела и увеличении кислотности крови (например, при поступлении в кровь больших количеств молочной кислоты при интенсивной мышечной работе), что тоже способствует лучшему снабжению тканей кислородом.

В целом за сутки человек, не выполняющий физической работы, использует 400-500 л кислорода. При высокой двигательной активности потребление кислорода значительно возрастает.

Транспорт кровью углекислого газа осуществляется из тканей всех органов, где происходит его образование в процессе катаболизма, в легкие, из которых он выделяется во внешнюю среду.

Бóльшая часть углекислого газа переносится кровью в форме солей - бикарбонатов калия и натрия. Превращение CO 2 в бикарбонаты происходит в эритроцитах с участием гемоглобина. В эритроцитах накапливаются бикарбонаты калия (KHCO 3), а в плазме крови - бикарбонаты натрия (NaHCO 3). С током крови образовавшиеся бикарбонаты поступают в легкие и превращаются там снова в углекислый газ, который удаляется из легких с

выдыхаемым воздухом. Это превращение происходит также в эритроцитах, но уже с участием оксигемоглобина, возникающего в капиллярах легких за счет присоединения кислорода к гемоглобину (см. выше).

Биологический смысл такого механизма переноса кровью углекислого газа заключается в том, что бикарбонаты калия и натрия обладают высокой растворимостью в воде, и поэтому в эритроцитах и в плазме они могут находиться в значительно бóльших количествах по сравнению с углекислым газом.

Небольшая часть CO 2 может переноситься кровью в физически растворенном виде, а также в комплексе с гемоглобином, называемым карбгемоглобином .

В состоянии покоя в сутки образуется и выделяется из организма 350-450 л CO 2 . Выполнение физических нагрузок приводит к увеличению образования и выделения углекислого газа.

Белые клетки (лейкоциты )

В отличие от красных клеток лейкоциты являются полноценными клетками с большим ядром и митохондриями, и поэтому в них протекают такие важнейшие биохимические процессы как синтез белков и тканевое дыхание.

В состоянии покоя у здорового человека в 1 мм 3 крови содержится 6-8 тыс. лейкоцитов. При заболеваниях количество белых клеток в крови может как уменьшаться (лейкопения), так и увеличиваться (лейкоцитоз). Лейкоцитоз может наблюдаться и у здоровых людей, например, после приема пищи или при выполнении мышечной работы (миогенный лейкоцитоз). При миогенном лейкоцитозе количество лейкоцитов в крови может повыситься до 15-20 тыс./мм 3 и более.

Различают три вида лейкоцитов: лимфоциты (25-26 %), моноциты (6-7 %) и гранулоциты (67-70 %).

Лимфоциты образуются в лимфатических узлах и селезенке, а моноциты и гранулоциты - в красном костном мозге.

Лейкоциты выполняют защитную функцию, участвуя в обеспечении иммунитета .

В самом общем виде иммунитет - это защита организма от всего «чужого». Под «чужим» подразумеваются различные чужеродные высокомолекулярные вещества, обладающие специфичностью и уникальностью своего строения и отличающиеся вследствие этого от собственных молекул организма.

В настоящее время выделяют две формы иммунитета: специфический и неспецифический . Под специфическим обычно подразумевается собственно иммунитет, а неспецифический иммунитет – это различные факторы неспецифической защиты организма.

Система специфического иммунитета включает тимус (вилочковая железа) , селезенку, лимфатические узлы, лимфоидные скопления (в носоглотке, миндалинах, аппендиксе и т. п.) и лимфоциты . Основу этой системы составляют лимфоциты.

Любое чужеродное вещество, на которое способна реагировать иммунная система организма, обозначается термином антиген . Антигенными свойствами обладают все «чужие» белки, нуклеиновые кислоты, многие полисахариды и сложные липиды. Антигенами могут быть также бактериальные токсины и целые клетки микроорганизмов, точнее макромолекулы, входящие в их состав. Кроме этого, антигенную активность могут проявлять и низкомолекулярные соединения, такие как стероиды, некоторые лекарства при условии их предварительного связывания с белком-носителем, например, альбумином плазмы крови. (На этом основано обнаружение иммунохимичекским методом некоторых допинговых препаратов при проведении допинг-контроля).

Поступивший в кровяное русло антиген распознается особыми лейкоцитами - Т-лимфоцитами, которые затем стимулируют превращение другого вида лейкоцитов - В-лимфоцитов в плазматические клетки, которые далее в селезенке, лимфоузлах и костном мозге синтезируют особые белки - антитела или иммуноглобулины . Чем крупнее молекула антигена, тем больше образуется различных антител в ответ на его поступление в организм. У каждого антитела имеются два связывающих участка для взаимодействия со строго определенным антигеном. Таким образом, каждый антиген вызывает синтез строго специфических антител.

Образовавшиеся антитела поступают в плазму крови и связываются там с молекулой антигена. Взаимодействие антител с антигеном осуществляется путем образования между ними нековалентных связей. Это взаимодействие аналогично образованию фермент-субстратного комплекса при ферментативном катализе, причем связывающий участок антитела соответствует активному центру фермента. Поскольку большинство антигенов являются высокомолекулярными соединениями, то к антигену одновременно присоединяется много антител.

Образовавшийся комплекс антиген-антитело далее подвергается фагоцитозу . Если антигеном является чужеродная клетка, то комплекс антиген-антитело подвергается воздействию ферментов плазмы крови под общим названием система комплемента . Эта сложная ферментативная система в конечном итоге вызывает лизис чужеродной клетки, т.е. её разрушение. Образовавшиеся продукты лизиса далее также подвергаются фагоцитозу .

Поскольку в ответ на поступления антигена антитела образуются в избыточных количествах, их значительная часть остается на длительное время в плазме крови, во фракции g-глобулинов. У здорового человека в крови содержится огромное количество различных антител, образовавшихся вследствие контактов с очень многими чужеродными веществами и микроорганизмами. Наличие в крови готовых антител позволяет организму быстро обезвреживать вновь поступающие в кровь антигены. На этом явлении основано проведение профилактических прививок.

Другие формы лейкоцитов - моноциты и гранулоциты участвуют в фагоцитозе . Фагоцитоз можно рассматривать как неспецифическую защитную реакцию, направленную, в первую очередь, на уничтожение поступающих в организм микроорганизмов. В процессе фагоцитоза моноциты и гранулоциты поглощают бактерии, а также крупные чужеродные молекулы и разрушают их своими лизосомальными ферментами. Фагоцитоз также сопровождается образованием активных форм кислорода, так называемых свободных радикалов кислорода, которые, окисляя липоиды бактериальных мембран, способствуют уничтожению микроорганизмов.

Как отмечалось выше, фагоцитозу также подвергаются комплексы антиген-антитело.

К факторам неспецифической защиты относятся кожные и слизистые барьеры, бактерицидность желудочного сока, воспаление, ферменты (лизоцим, протеиназы, пероксидазы) , противовирусный белок - интерферон и др.

Регулярные занятия спортом и оздоровительной физкультурой стимулируют иммунную систему и факторы неспецифической защиты и тем самым повышают устойчивость организма к действию неблагоприятных факторов внешней среды, способствуют снижению общей и инфекционной заболеваемости, увеличивают продолжительность жизни.

Однако исключительно высокие физические и эмоциональные перегрузки, свойственные спорту высших достижений, оказывают на иммунитет неблагоприятное влияние. Нередко у спортсменов высокой квалификации наблюдается повышенная заболеваемость, особенно в период ответственных соревнований (именно в это время физическое и эмоциональное напряжение достигает своего предела!). Очень опасны чрезмерные нагрузки для растущего организма. Многочисленные данные свидетельствуют, что иммунная система детей и подростков более чувствительна к таким нагрузкам.

В связи с этим важнейшей медико-биологической задачей современного спорта является коррекция иммунологических нарушений у спортсменов высокой квалификации путем применения различных иммуностимулирующих средств.

Кровяные пластинки (тромбоциты ).

Тромбоциты - это безъядерные клетки, образующиеся из цитоплазмы мегакариоцитов - клеток костного мозга. Количество тромбоцитов в крови обычно 200-400 тыс./мм 3 . Основная биологическая функция этих форменных элементов - участие в процессе свертывания крови .

Свертывание крови - сложнейший ферментативный процесс, ведущий к образованию кровяного сгустка - тромба с целью предупреждения кровопотери при повреждении кровеносных сосудов.

В свертывании крови участвуют компоненты тромбоцитов, компоненты плазмы крови, а также вещества, поступающие в кровяное русло из окружающих тканей. Все вещества, участвующие в этом процессе, получили название факторы свертывания . По строению все факторы свертывания кроме двух (ионы Са 2+ и фосфолипиды) являются белками и синтезируются в печени, причем в синтезе ряда факторов участвует витамин К.

Белковые факторы свертывания поступают в кровяное русло и циркулируют в нем в неактивном виде - в форме проферментов (предшественников ферментов), которые при повреждении кровеносного сосуда способны стать активными ферментами и участвовать в процессе свертывания крови. Благодаря постоянному наличию проферментов, кровь находится все время в состоянии «готовности» к свертыванию.

В самом упрощенном виде процесс свертывания крови можно условно разделить на три крупных этапа.

На первом этапе, начинающемся при нарушении целостности кровеносного сосуда, тромбоциты очень быстро (в течение секунд) накапливаются в месте повреждения и, слипаясь образуют своего рода «пробку», которая ограничивает кровотечение. Часть тромбоцитов при этом разрушается, и из них в плазму крови выходят фосфолипиды (один из факторов свертывания). Одновременно в плазме за счет контакта с поврежденной поверхностью стенки сосуда или с каким либо инородным телом (например, игла, стекло, лезвие ножа и т.п.) происходит активация еще одного фактора свертывания - фактора контакта . Далее с участием этих факторов, а также некоторых других участников свертывания формируется активный ферментный комплекс, называемый протромбиназой или тромбокиназой. Такой механизм активации протромбиназы называется внутренним, так как все участники этого процесса содержатся в крови. Активная протромбиназа также образуется и по внешнему механизму. В этом случае требуется участие фактора свертывания, отсутствующего в самой крови. Этот фактор имеется в тканях, окружающих кровеносные сосуды, и попадает в кровяное русло лишь при повреждении сосудистой стенки. Наличие двух независимых механизмов активирования протромбиназы повышает надежность системы свертывания крови.

На втором этапе под влиянием активной протромбиназы происходит превращение белка плазмы протромбина (это тоже фактор свертывания) в активный фермент - тромбин .

Третий этап начинается с воздействия образовавшегося тромбина на белок плазмы - фибриноген . От фибриногена отщепляется часть молекулы и фибриноген превращается в более простой белок - фибрин-мономер , молекулы которого спонтанно, очень быстро, без участия каких либо ферментов подвергаются полимеризации с образованием длинных цепей, называемых фибрином-полимером . Образовавшиеся нити фибрина-полимера являются основой кровяного сгустка - тромба. Вначале формируется студнеобразный сгусток, включающий в себя кроме нитей фибрина-полимера еще плазму и клетки крови. Далее из тромбоцитов, входящих в этот сгусток, выделяются особые сократительные белки (типа мышечных), вызывающие сжатие (ретракцию) кровяного сгустка.

В результате перечисленных этапов образуется прочный тромб, состоящий из нитей фибрина-полимера и клеток крови. Этот тромб располагается в поврежденном месте сосудистой стенки и препятствует кровотечению.

Все этапы свертывания крови протекают с участием ионов кальция.

В целом процесс свертывания крови занимает 4-5 минут.

В течение нескольких дней после образования кровяного сгустка, после восстановления целостности сосудистой стенки происходит рассасывание теперь уже не нужного тромба. Этот процесс называется фибринолизом и осуществляется путем расщепления фибрина, входящего в состав кровяного сгустка, под действием фермента плазмина (фибринолизина). Данный фермент образуется в плазме крови из своего предшественника - профермента плазминогена под влиянием активаторов, которые находятся в плазме или же поступают в кровяное русло из окружающих тканей. Активации плазмина также способствует возникновение при свертывании крови фибрина-полимера.

В последнее время выяснено, что в крови еще имеется противосвертывающая система, которая ограничивает процесс свертывания только поврежденным участком кровяного русла и не допускает тотального свертывания всей крови. В образовании противосвертывающей системы участвуют вещества плазмы, тромбоцитов и окружающих тканей, имеющие общее название антикоагулянты. По механизму действия большинство антикоагулянтов являются специфическими ингибиторами, действующими на факторы свертывания. Наиболее активными антикоагулянтами являются антитромбины, препятствующие превращению фибриногена в фибрин. Наиболее изученным ингибитором тромбина является гепарин , который предупреждает свертывание крови как in vivo, так и in vitro.

К противосвертывающей системе можно также отнести систему фибринолиза.

Кислотно-основной баланс крови

В покое у здорового человека кровь имеет слабощелочную реакцию: рН капиллярной крови (её обычно берут из пальца руки) составляет примерно 7,4 , рН венозной крови равняется 7,36. Более низкое значение водородного показателя венозной крови объясняется бóльшим содержанием в ней углекислоты, возникающей в процессе метаболизма.

Постоянство рН крови обеспечивается находящимися в крови буферными системами. Основными буферами крови являются: бикарбонатный (H 2 CO 3 /NaHCO 3), фосфатный (NaH 2 PO 4 /Na 2 HPO 4), белковый и гемоглобиновый . Самой мощной буферной системой крови оказалась гемоглобиновая: на её долю приходится 3/4 всей буферной емкости крови (механизм буферного действия см. в курсе химии).

У всех буферных систем крови преобладает оснóвный (щелочной) компонент, вследствие чего они нейтрализуют значительно лучше поступающие в кровь кислоты, чем щелочи. Эта особенность буферов крови имеет большое биологическое значение, поскольку в ходе метаболизма в качестве промежуточных и конечных продуктов часто образуются различные кислоты (пировиноградная и молочная кислоты - при распаде углеводов; метаболиты цикла Кребса и b-окисления жирных кислот; кетоновые тела, угольная кислота и др.). Все возникающие в клетках кислоты могут попасть в кровяное русло и вызвать сдвиг рН в кислую сторону. Наличие большой буферной емкости по отношению к кислотам у буферов крови позволяет им нейтрализовать значительные количества кислых продуктов, поступающих в кровь, и тем самым способствовать сохранению постоянного уровня кислотности.

Суммарное содержание в крови оснóвных компонентов всех буферных систем обозначается термином «Щелочной резерв крови ». Чаще всего щелочной резерв рассчитывается путем измерения способности крови связывать СО 2 . В норме у человека его величина составляет 50-65 об. % , т.е. каждые 100 мл крови могут связать от 50 до 65 мл углекислого газа.

В поддержании постоянства рН крови также участвуют органы выделения (почки, легкие, кожа, кишечник). Эти органы удаляют из крови избыток кислот и оснований.

Благодаря буферным системам и выделительным органам колебания величины рН в физиологических условиях незначительны и не опасны для организма.

Однако при нарушениях метаболизма (при заболеваниях, при выполнении интенсивных мышечных нагрузок) может резко повыситься образование в организме кислых или щелочных веществ (в первую очередь, кислых!). В этих случаях буферные системы крови и экскреторные органы не в состоянии предотвратить их накопление в кровяном русле и удержать значение рН на постоянном уровне. Поэтому при избыточном образовании в организме различных кислот кислотность крови возрастает, а величина водородного показателя снижается. Такое явление получило название ацидоз . При ацидозе рН крови может уменьшаться до 7,0 - 6,8 ед. (Следует помнить, что сдвиг рН на одну единицу соответствует изменению кислотности в 10 раз). Снижение величины рН ниже 6,8 несовместимо с жизнью.

Значительно реже может происходить накопление в крови щелочных соединений, рН крови при этом увеличивается. Это явление называется алкалоз . Предельное возрастание рН - 8,0.

У спортсменов часто встречается ацидоз, вызванный образованием в мышцах при интенсивной работе больших количеств молочной кислоты (лактата).

Глава 15.БИОХИМИЯ ПОЧЕК И МОЧИ

Моча, также как и кровь, часто является объектом биохимических исследований, проводимых у спортсменов. По данным анализа мочи тренер может получить необходимые сведения о функциональном состоянии спортсмена, о биохимических сдвигах, возникающих в организме при выполнении физических нагрузок различного характера. Поскольку при взятии крови для анализа возможно инфицирование спортсмена (например, заражение гепатитом или СПИД-ом) , то в последнее время всё предпочтительнее становится исследование мочи. Поэтому тренер или преподаватель физического воспитания должны обладать информацией о механизме образования мочи, об её физико-химических свойствах и химическом составе, об изменении показателей мочи при выполнении тренировочных и соревновательных нагрузок.


Сердечная деятельность зависит от электролитного состава крови .

Важная роль в нормальной жизнедеятельности сердца принадлежит электролитам.

Изменения концентрации в крови солей калия и кальция оказывают весьма значительное влияние на автоматию и процессы возбуждения и сокращения сердца.

Избыток ионов калия угнетает все стороны сердечной деятельности, действуя отрицательно хронотропно (урежает ритм сердца), инотропно (уменьшает амплитуду сердечных сокращений), дромотропно (ухудшает проведение возбуждения в сердце), батмотропно (уменьшает возбудимость сердечной мышцы). При избытке ионов К + сердце останавливается в диастоле. Резкие нарушения сердечной деятельности наступают и при уменьшении содержания ионов К + в крови (при гипокалиемии).

Избыток ионов кальция действует в обратном направлении: положительно хронотропно, инотропно, дромотропно и батмотропно. При избытке ионов Са 2+ сердце останавливается в систоле. При уменьшении содержания ионов Са 2+ в крови сердечные сокращения ослабляются.

Таблица. Нейрогуморальная регуляция деятельности сердечно-сосудистой системы

Натрий - основной внеклеточный катион. Играет главную роль в поддержании осмотического давления - 90%. Участвует в возникновении и поддержании ПП и ПД, калий и натрий являются антагонистами на клеточном уровне, т.е. повышение содержания натрия приводит к уменьшению калия в клетке.

11. Гемолиз и его виды учебник

Гемолизом называется разрушение оболочки эритроцитов, сопровождающееся выходом гемоглобина в плазму крови, которая окрашивается при этом в красный цвет и становится прозрачной («лаковая кровь»).

Разрушение эритроцитов может быть вызвано уменьшением осмотического давления, что вначале приводит к набуханию, а затем к разрушению эритроцитов - это так называемый осмотический гемолиз (возникает в том случае, когда осмотическое давление окружающего эритроциты раствора уменьшается вдвое по сравнению с нормальным). Концентрация NaCl в окружающем клетку растворе, при которой начинается гемолиз, является мерой так называемой осмотической стойкости (резистентности) эритроцитов. У человека гемолиз начинается в 0,4% растворе NaCl, а в 0,34% растворе разрушаются все эритроциты. При различных патологических состояниях осмотическая стойкость эритроцитов может быть уменьшена и полный гемолиз может наступить и при больших концентрациях NaCl в растворе.

Химический гемолиз происходит под влиянием веществ, разрушающих белково-липидную мембрану эритроцитов- эфир, хлороформ, бензол, алкоголь, желчные кислоты, сапонин и некоторые другие вещества.

Механический гемолиз возникаетпод влиянием сильных механических воздействий, например в результате сотрясения ампулы с кровью.

Гемолиз также вызывают повторные замораживание и оттаивание крови – термический гемолиз.

12. Группы крови системы Rh Работа 3.13 – стр. 95

13. Определение резус-принадлежности крови человека. Значение Rh Работа 3.13 – стр. 95

14. Определения количества гемоглобина в крови по способу Сали , Работа 3.3 – стр.77

Определение количества гемоглобина . Принцип определения – колориметрический (сравнение цвета исследуемой крови со стандартными растворами). (а) Гемометрия: гемометр Сали – небольшой штатив с тремя пробирками, где в среднюю пробирку помещают исследуемую кровь, а две другие пробирки содержат стандартный раствор для сравнения. Исследуемую кровь смешивают с соляной кислотой (для гемолиза и образования солянокислого гематина коричневого цвета). Затем добавляют дистиллированную воду до тех пор, пока раствор исследуемой крови на будет такого же цвета, как стандартные растворы. Средняя пробирка имеет шкалу в единицах измерения количества гемоглобина. Нормальное содержание гемоглобина 130-160 г/л. (б) Фотоэлектроколориметрия (с использованием ФЭК).

Для измерения содержания гемоглобина существует много методов, в том числе:

1) определение количества связанного O 2 (1 г НЬ может присоединить до 1,36 мл O 2);

2) анализ уровня железа в крови (содержание железа в гемоглобине составляет 0,34%);

3) колориметрия (сравнение цвета крови с цветом стандартного раствора);

4) измерение экстинкции (спектрофотометрия). При проведении рутинных определений уровня гемоглобина отдают предпочтение последнему методу, так как при

Рис. 22.5. Частотное распределение концентраций гемоглобина у взрослых мужчин (♂), взрослых женщин (♀) и новорожденных. По оси ординат–относительная частота встречаемости, по оси абсцисс–содержание гемоглобина; μ–среднее значение (медиана), ст–стандартное отклонение (величина, характеризующая разброс значений; соответствует расстоянию от медианы кривой нормального распределения до значения, соответствующего наиболее крутому участку этой кривой)

использовании первых двух способов необходима сложная аппаратура, а метод колориметрии неточен.

Спектрофотометрический анализ. Принцип метода состоит в определении содержания НЬ в крови по экстинкции монохроматического света. Поскольку растворенный гемоглобин нестабилен, а экстинкция зависит от степени оксигенации, его необходимо предварительно перевести в стабильную форму.

Спектрофотометрические измерения содержания гемоглобина производят следующим образом. Кровь набирают в капиллярную пипетку и затем смешивают с раствором, содержащим калий железосинеродистый (K 3 ), цианистый калий (KCN) и бикарбонат натрия (NаНСО 3). Под действием этих веществ эритроциты разрушаются, и гемоглобин превращается вциан–метгемоглобин HbCN (содержащий трехвалентное железо), способный сохраняться в течение нескольких недель. При спектрофотометрии раствор цианметгемоглобина освещают монохроматическим светом с длиной волны 546 нм и определяют экстинкцию Е. Зная коэффициент экстинкции e и толщину слоя раствора d, можно, исходя из закона Ламберта–Бэра [уравнение (2)], определить концентрацию раствора С непосредственно по величине экстинкции Е. Чаще предпочитают, однако, предварительно откалибровать шкалу экстинкции при помощи стандартного раствора. В настоящее время цианметгемоглобиновый метод считается наиболее точным из общепринятых способов измерения содержания гемоглобина .


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции