26.10.2019

Bg на 2153 с регулировкой выходного напряжения. Мощное зарядное устройство для любых аккумуляторов. Инструкция по изготовлению импульсного ЗУ своими руками


Давно мечтал изготовить преобразователь напряжения 1,5 - 9 вольт «Крона» из аккумулятора ААА для цифровых мультиметров. В роли корпуса для самодельного преобразователя я решил взять корпус от старой батареики типа «Крона».

Во первых, я аккуратно разогнул завальцованный край задней части корпуса батарейки. В углах осторожно отогнул завальцовку используя маленькую отвертку. Удалил секции батареи. А затем в задней стенке диаметром 6 мм просверлил отверстие и вставил стандартное гнездо под "Джек 3,5мм" для зарядки аккумулятора типа АА.


Известная перефразировка афоризма Леонардо да Винчи: «Всё гениальное – просто», отлично подходит для прототипа нашей схемы которую мы позаимствовали из одного из радиолюбительских журналов:


Наша, схема состоит всего из пяти радиокомпонентов, причем два из них, это ёмкости фильтров. Вместо выпрямителя ВЧ применяются база-эмиттерные переходы транзисторов самого генератора. Поэтому, значение тока базы пропорционально величине тока в нагрузке, что делает конструкцию весьма энергоэффективной.

C1, C2 – 22µF; VT1, VT2 – КТ209К; B1 – 1… 1,5V

Другой интересной особенностью конструкции генератора можно считать срыв колебаний в отсутствие подключенной нагрузки, что на 100% решает проблему эффективного управления питанием.

Трансформатор TV1 изготовлен из кольцевого магнитопроводе 2000НМ размером К7х4х2, на котором намотаны обмотки III и IV содержащие по 28 витков медного провода диаметром 0,16мм, а I, II по 4 витка - 0,25мм. ()

Вначале наматывают вторичные обмотки III и IV. Их нужно намотать одномоментно в два провода. Витки фиксируем клеем, «БФ-2» или «БФ-4». Затем, точно так же в два провода, наматывают первичные обмотки.

Схема собрана с помощью навесного монтажа, монтажной нитью связаны между собой транзисторы, конденсаторы и самодельный трансформатор.

Настройка схемы. Для установки заданного уровня выходного напряжения, может потребоваться подборка количества витков, чтобы при напряжении на аккумуляторе ААА в 1,0 Вольт, на выходе преобразователя было 7 Вольт. При этом минимальном напряжении, в мультиметре начинает мигать индикатор разряда батареи.

Если вместо КТ209К применены транзисторы другого типа, тогда подстраиваем количество витков вторичной обмотки самодельного трансформатора. Это происходит из-за разного падения напряжения на p-n переходах у разнотипных полупроводников. Я собрал эту конструкцию на транзисторах КТ502 при "родных" параметрах трансформатора. Выходное напряжение при этом упало где-то на вольт.

Перед окончательным этапом сборки конструкции, все радиокомпоненты соединил гибким многожильным проводом, и проверил работу схемы. Для защиты от КЗ, импульсный преобразователь со стороны контактов заизолирован герметиком.

Импульсный блок питания на IR2151-IR2153

Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.


На входе стоит PTC термистор – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа "вертикалка", но можно использовать диодную сборку типа "табуретка".

Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.

Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф .

Печатная плата

Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих "наворотов", присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных "плохому питанию" (фон и посторонние звуки).

В работе полевые транзисторы не сильно нагреваются.

Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

Схема такого импульсного блока питания в интернете встречается довольно часто, но в некоторых из них допущены ошибки, я же в свою очередь чуть доработал схему. Задающая часть (генератор импульсов) собран на ШИМ-контроллере IR2153. Схема из себя представляет типичный полумостовой инвертор с мощностью 250 ватт.

Импульсное ЗУ для зарядки аккумуляторов схема
Мощность инвертора можно повысить до 400 ватт, если заменить электролитические конденсаторы на 470 мкФ 200 Вольт.

Силовые ключи с нагрузкой до 30 -50 ватт остаются холодными, но их нужно установить на теплоотводы, возможно будет нужда в воздушном охлаждении.

Использован готовый трансформатор от компьютерного блока питания (подойдет буквально любой). Они имеют шину 12 Вольт до 10 Ампер (зависит от мощности блока, в котором они использовались, в некоторых случаях обмотка на 20 Ампер). 10 Ампер тока вполне хватит для зарядки мощных кислотных аккумуляторов с емкостью до 200А/ч.

Диодный выпрямитель — в моем случае была использована мощная диодная сборка шоттки на 30 Ампер. Диод всего один.

ВНИМАНИЕ!
Не коротить вторичную обмотку трансформатора, это приведет к резкому повышению тока в первичной цепи, к перегреву транзисторов, в следствии чего они могут выйти из строя.

Дроссель — тоже был снят от импульсного БП, его при желании можно исключить из схемы, он тут применен в сетевом фильтре.

Предохранитель тоже не обязательно ставить. Термистор — любой (я взял от нерабочего компьютерного блока питания). Термистор сохраняет силовые транзисторы во время бросков напряжения. Половина компонентов этого блока питания можно выпаять из нерабочих компьютерных БП, в том числе и электролитические конденсаторы.

Полевые транзисторы — я ставил мощные силовые ключи серии IRF740 с напряжением 400 Вольт при токе до 10 Ампер, но можно использовать любые другие аналогичные ключи с рабочим напряжением не менее 400 Вольт с током не менее 5 Ампер.

К блоку питанию не желательно добавить дополнительные измерительные приборы, поскольку ток тут не совсем постоянный, стрелочный или электронный Вольтметр могут работать неправильно.
Готовое зарядное устройство достаточно компактное и легкое, работает полностью бесшумно и не греется при холостом ходу, обеспечивает достаточно большой выходной ток. Затраты на компоненты минимальны, но на рынке такие ЗУ стоят 50-90$.


Неплохая и интересная схема качественного зарядного устройства на основе микросхемы IR2153, самотактируемого полумостового драйвера, которая довольно часто используется в электронных балластах энергосберегающих ламп.

Схема работает от сети переменного напряжения 220 Вольт, ее выходная мощность около 250 ватт, а это около 20 Ампер при 14 Вольтах выходного напряжения, чего вполне достаточно для зарядки автомобильных аккумуляторов.

На входе имеется сетевой фильтр, и защита от бросков напряжения и перегруза блока питания. Термистор защищает ключи во время начального момента включения схемы в сеть 220 Вольт. Затем сетевое напряжение выпрямляется диодным мостом.

Через ограничительное сопротивление 47 кОм напряжение проходит на микросхему генератора. Импульсы определенной частоты следуют на затворы высоковольтных ключей, которые срабатывая пропуская напряжение в сетевую обмотку трансформатора. На вторичной обмотке мы имеем требуемое для заряда аккумуляторов напряжение.

Выходное напряжение ЗУ зависит от количества витков во вторичной обмотке и рабочей частоты генератора. Но частоту не следует поднимать выше 80кГц, оптимально 50-60кГц.

Высоковольтные ключи IRF740 или IRF840. Меняя емкость конденсаторов во входной цепи можно увеличить или уменьшить выходную мощность зарядного устройства, при необходимости можно достичь 600 ваттной мощности. Но нужны конденсаторы 680 мкФ и мощный диодного мост.

Трансформатор можно взять готовый из компьютерного блока питания. А можно и его сделать самому. Первичная обмотка содержит 40 витков провода диаметром 0,8 мм, затем накладываем слой изоляции наматываем вторичную обмотку - где то 3,5-4 витка из довольно толстого провода или использовать многожильный провод.

После выпрямителя в схеме установлен фильтрующий конденсатор, емкость не более 2000 мкФ.

На выходе необходимо поставить импульсные диоды с током не менее 10-30А, обычные сразу сгорят.

Внимание схема ЗУ не имеет защиты от короткого замыкания и сразу выйдет из строя, если такое произойдет.

Еще один вариант схемы зарядного устройства на микросхеме IR2153


Диодный мост состоит из любых выпрямительных диодов с током не менее 2А, можно и больше и с обратным напряжением 400 Вольт, можно использовать готовый диодный мост из старого компьютерного блока питания в нем обратное напряжение 600 Вольт при токе 6 А.

Для обеспечения требуемых параметров питания микросхемы необходимо взять сопротивление 45-55 кОм с мощностью 2 ватт, если таких не можете найти, соедините последовательно несколько маломощных резисторов.


© 2024
alerion-pw.ru - Про лекарственные препараты. Витамины. Кардиология. Аллергология. Инфекции